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PREFACE

This document contains the proceedings of the Symposium on "Sensitivity Analysis in

Engineering," held at the NASA Langley Research Center, September 25-26, 1986. The

symposium was jointly sponsored by the NASA Langley Research Center and Virginia

Polytechnic Institute and State University.

The purpose of the symposium was to disseminate the latest research in the general

area of sensitivity analysis, i.e., the systematic calculation of derivatives of the

response of a physical model with respect to parameters characterizing the model. A

review of recent literature (which the symposium co-chairmen carried out and docu-

mented shortly before the symposium) indicated to us that few engineering disciplines

are more broadly based across disciplinary lines than is sensitivity analysis. In

fact, contributions to research in sensitivity analysis are represented in nearly

every major field from chemistry and physics to structural mechanics, aerodynamics,

thermodynamics, and behavioral psychology. In recognition of the multidisciplinary

nature of sensitivity analysis, the keynote paper was on the subject of sensitivity

analysis in chemistry and physics.

The symposium was organized in the following sessions:

I General and Multidisciplinary Sensitivity

II Static Structural Sensitivity Analysis and Applications

III Eigenproblem Sensitivity Methods

IV Transient Sensitivity Analysis

V Shape Sensitivity Analysis

Papers in these proceedings are grouped by session and identified in the contents.

The order of the papers is the order of presentations at the symposium. The papers

contained herein were submitted as camera-ready copy.

The use of trade names or names of manufacturers in this publication does not con-

stitute an official endorsement of such products or manufacturers, either expressed

or implied, by the National Aeronautics and Space Administration.

Howard M. Adelman

Raphael T. Haftka

Symposium Co-Chairmen
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N87-18856
ON DETERMINING IMPORTANT ASPECTS OF MATHEMATICAL MODEl.S:

APPLICATION TO PROBLEMS IN PHYSICS AND CHEMISTRY x

Herschel RabRz

Princeton University

Department of Chemistry

Princeton, NJ

SUMMARY

Mathematical modellin8 must always deal with two 8eneral probIems.

First, the form, parameters or distributed functions in a mathematical mode]

are often Jmprecisel), known and their impact on desired objectives or

observables is an important issue. Second, even when the components in a

mode] are "known" there always remains the fundamental question concerrfin 8

the importance and interrelationship between the various components of the

system. The use of parametric and functional 8radient sensitivity anal),sJs

techrfiques iS considered for models described b), partial differential

equations. By interchansJn8 appropriate dependent and independent variables,

questions of inverse sensitivity may be addressed to 8ain Jnsisht into the

inversion of observational data for parameter and function identification in

mathematical models. It may be arsued that the presence of a subset of

don%inantl), stron 8 coupled dependent variables will result in the overall system

sensitivity behavior co]]apsin 8 into a simple set of soalin8 and self similarity

relations amonsst elements of the entire matrix of sensitivity coefficients.

These 8eneral tools are 8enerio in nature, but the present paper will

emphasize their application to problems arisJn8 in selected areas of physics

and chemistry.

INTRODUCTION

Mathematical modellin8 and anal),ms has been a traditionalI), active area

in ensineerin8 and this is especially true in recent years with the ready

availability of hish-speed d/sJtal computers. Such model]in8 efforts have man)'

8ca]s, inoludJn 8 desisn, optimization and mereI), understandln8 the systems'

components. As an adjunct to these efforts, the tools of sensitivity anal),sJs

provide a natural means to aid in an of these 8oals and the development of

the subject in ensineerin 8 has been especially focused on applications to

desisn and optimization. The ultimate drJvin8 force behind all these efforts is

certain]), the practical issues of increased reliability, efficiency, etc.

An interesting contrast with the modelUns/sensitivJty analysis efforts

primarily in ensJneerin 8 occurs upon consideration of analosous problems in

the "fundamental" areas of chemistry and ph),sics. The first point of contrast

is that issues of desisn and optimization are frequently not relevant in basic

x The author acknowledses support for this

work from the Office of Naval Research.



research studies of chemistry and physics (studies involving problems Jn

applied physics, industrial chen_dcal processes, etc. would be best categol-Jzed

as engineerin 8) . The term "modelling" is also rarely used Jn the scientific

disciplines and the basic thrust Js usually for an attainment of system

understandin 8. In particular, control variables frequently found in engJneerin 8

problems are often absent in the physical and chemical events occurTJng at

atomic and molecular scales. The lack of practical motivation and these

inherent differences between engineerin 8 and scJentifdo problems has apparently

resulted Jn only a recent realization that the tools of sensitivity analysis have a

potentially valuable contribution to make in chemistry and physics. 1-6

The differences cited above obscure the overall basic similarity between

mathematically defined engineering and scientific problems. Their common

foundation lies in their basic input-output nature. In addition, the particular

mathematical formulations involved can be quite similar even though the

physical interpretation is different (e.g., the equations of stationary quantum

mechanics are exactly those of classical linear waves). From this general

perspective, a common set of tools may be developed within the framework of

sensitivity analysis of benefit to all the relevant disciplines making use of

mathematical modelling techniques. The present paper will succinctly review

current activit_ with the topics being primarily in the area of chemical

physics. Special emphasis will be given viewing problems from a functional

perspective rather than treating them as described by a discrete set of input

parameters. This approach is essential tn many scientific applications and

o[ten has a similar broad basis in engineerin 8 . Although the particular

applications discussed in the paper require more information than provided

here for a full appreciation of their signlfioance , they should be viewed in a

generic context for analogous applications in other possible areas of interest

to the reader. Finally, due to the brief nature of this paper, no attempt will

be made to thoroughly review all recent developments in sensitivity analysis as

applied to chemical physics problems; a series of recent review articles is

available to cover this literature. I-6

BASIC CONCEPTS OF FUNCTIONAL SENSITFvUTY ANAI,YSIS

The problems of interest Jn chenlical physics at the alonzo scale or

macro scale are typically described by differential equations of a boundary

value and/or initial value nature. For example, Sohrodinger's equation in

quantum mechanics has the form

[_ 88t _22m V2 ÷ V(r)]_ = 0

and the equations of mass conservation Jn chen_cal kineIJcs have the form

ac_ Ci - DiV2Ci - fi(C ) = 0
_t

These latter equations follow conventional notation where _ is Plancks

constant, m Js the mass of the pardo]e interacting w_th potential V(_r) and its

wavefunction ]r(_r,t) is evaluated at point _r and time t, while C i is the i-th



chemical species concentration, D i is the corresponding diffusion coefficient

and the reactive flux Ci is generally a nonlinear function o£ the
concentrations. Although Schrodinger's equation is rigorously the only valid
approach for treating dynamics at the atomic scale, classical mechanics is a

very popular and often quite accurate approach to treating the motion of

atoms and molecules. In this case, Hamilton's equations

aqi 8H 8Pi aH

at apj ' _-_ aqj

would apply where H(R,g) is the Hamtltontan with i-th coordinate qi and
momentum Pi- Various other dynamical equations also occur in statistical

mechanics and in models occurring in all aspects of chemical physics. A

general situation commonly arising, included in the equations above, is the

appearance of coefficients which are functions of either the system

independent or dependent variables. For example, the potential V(_r) plays
this role in Schrodinger's equation. These functions may be thought of as

input, and two broad categories will arise. First, the form of these functions

may be imprecisely known due to a lack of fun understanding of the system

or simply imprecise measurements defining the structure of the functions.

Second, even if the input functions are known precisely, there is typically a

very poor understanding of how the form or structure of these functions

influences the behavior of the equation solutions or observables. As

mentioned in the Introduction, the possibility of varying these functions for the

purpose of optimization will not be explicitly considered here since this is not

often the case. Therefore, the role of sensitivity analysis in chemistry and

physics is largely to provide a means to probe the interrelationship between

the input and output functions (i.e., deterrrune the important aspects of the

system) .

]n order to better quantify the above discussion, we may generally write

any of the appropriate dii:ferential equations in the following form

Li(r,t,__ ) : 0 (t)

where Li is the i-th differential operator typically being a nonlinear function of

the elements of the output solution vector @(r,t). Appropriate initial and/or

boundary conditions would be given in order to completely specify the

problem. The parametric functional nature of the differential equations is

evident through the arguments ot Lj in Eq. (I) depending on position r and

time t. In addition, the boundary conditions may be functions of time and

the initial conditions may be functions of position also acting as another class

of input functions for consideration. Regardless of the circumstance, we may

generally denote the vector of input functions as _R([,t) and the first variation

of Eq. (I) becomes

__ at'i O_n (r, t) O[. i

n
= 0 (2)

The first of these terms in Eq. (2) involves the system Jacobian 81418_ n,

and the second term is the explicR functional derivative of the operator with



respect to the i.-th member of the input function set. The solution to this

linear differential equation produces the functional derivative matrix

6_n(_r,t)/0_lg(r',t') 8ivin8 the response of the n-th output at position r and

time t with respect to a disturbance of the l-th input function a position _r'

and time t' such that

84_n(r,t ) :- -_--_ dr_'dt' /)_n(r't) /)i_t(r' ,t') (3)___j 8n_ (r' ,t' )

where /)f_I(_r',t') is an arbitrary infinitesimal functional variation. The matrix

solution to Eq. (2) constitutes what is sometimes referred to as the forward

sensitivity matrix. All of the general applications of sensitivity analysis in

chemical physics have focused on an examination of the sensitivity matrix

elements and perhaps most importantly their manipulation to address other

questions besides mere input-output relations. This point wiU be emphasized

later in this paper.

Since Eq. (2) is linear, it is quite natural to define a Green's function

matrix with elements /)_n(r_,t)/()_£(_r',t') havin 8 the 8eneral interpretation of

the response of _n to a disturbance of the flux 3t of the _-th member of

the d__ependent variable set. This matrix satisfies the following equation

ai't OCn(L,t)
n a_ n O_i I (_r',t')

= 8it 0([-r') 8(t-t') (z,)

The solution to Eq. (2) may be directly expressed in terms of the

Green's function solution to Eq. (4). In some cases, this can be a practical

numerical procedure but more importantly the elements of the Green's function

matrix have direct physical sisnificance and in principle measurements in the

laboratory could be performed to determine them. This latter point is

especially important since as commented above many basic problems in

chemistry and physics do not inherently contain laboratory control functions or

variables.

Equation (2) produces the first order functional perturbation coefficients

to the nominal solution of Eq. (1) as evidenced by Eq. (3). Due care _s

needed if the physics corresponds to a desenerative perturbation problem.

Standard procedures exist in this case correspondin 8 to the introduction of

directional derivatives. A variety of numerical techniques have been developed

for so]wing Eqs. (2) or (4), and detsd]ed information may be found in the

literature. In 8eneral, it seems most efficient to solve Eq. (2) by maximally

taking advantaRe of its structure in relation to the often employed Newton

linearization schemes applied to Eq. (_).

]n practice, the coupled differential equations in Eq. (_) are often highly

nonlinear and an interestin R type of scaling behavior has been found under

certain conditions. _* This situation has not been explored for the case of

functional variations, except for the Green's function, and for that reason we

shall consider it here in terms of discrete system parameters denoted by the

vector _. Supposin 8 that a single dominant d__@_pendent variable exists one

misht expect that a variation in any siren system parameter would show up as

significant, provided that the dominant variable siRnificant]y responded.

_H. Rabitz and M. Smooke, "Scaling Relations and Self Similarity

Conditions in Strons]y Coupled Dynamical Systems', J. Phys. Chem., in

progress.
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Without loss of 8enerality, we may take the dominant dependent variable

as _l(t,_) where time t is taken as the only independent "coordinate" for

simplicity. Often the identification of this dominant variable seems to be

associated with the most stronsly coupled nonlinear member entering the

differential equations. Under the assumption of stron 8 dominant dependence,

we may approximate the remalnin 8 dependent varJab]es as

_n(t,_q) _ _n(_Ct,a)) (5)

where _,n is an appropriate function. The important point is that the

parameter dependence of all the remainin 8 dependent variables is

approximately driven through that of the dominant dependent variable.

This is in keepin 8 with the notion that the dominant variable will pass

judsment over any parameter variation resardin 8 its sisnificanoe to any of the

remalnin8 dependent variables. A natura] consequence of the approximation

in Eq. (5) is the scalin8 relation

 -&ii j " la-h--j la-Fj (6)

which expresses all the system sensitivities in terms of those of the dominant

dependent variable and simple temporal slope information. The full

significance of stalin 8 behavior has not been established althouBh it may have

wide applicability in nonlinear systems outside of chemistry and physics.

A MENU OF SENSITIVITY APPLICATIONS IN GHEMIOAI, PHYSIOS

It is beyond the scope and purpose of this paper to present detailed,

elaborate physical analyses of particular models or problems. Rather, the

examples should be viewed for their 8eneric behavior and as illustrations of

the type of sensitivity technoloBy existin 8 in chemical physics (specific citations

to the literature can be found in refs. 2-6). The best means to present this

information appears to be in the narrative tabular form Siren below. Finally,

many of the examples carried out thus far in chemical physics have considered

discrete parameter systems rather than those prescribed from a funotionai

point of view. This approach was taken even thouBh the physical problems

were functional in nature. A]thouBh these studies were often insiBhtful , a

number of cases clearly indicate that the use of a small number of discrete

parameters to represent typical continuous input functions can 8ive mis]eadin8

sensitivity results at times. This comment would most assuredly be applicable

to situations outside the realm of chemical physics.

A. Forward Sensitivities

A direct analysis of the 8radients introduced in Eq. (2) comprises the

forward problem. The name forward results from the fact that the system is

bein 8 analyzed from the forward direction whereby the response of the output

to a disturbance of the input is examined. The masnitude , siBn and 8eneral



behavior of the sensitivity coefficients as a function of their arguments is of

concern. This comment applies to all of the other applications in the

following paragraphs. A wealth of information can be gleaned by such an

analysis and a number of applications have been carried forth. For example,

in the case of molecular collisions, the role of different regions of the

potential function upon the collision cross section has been explored. For

elastic, inelastic and reactive scattering, a wide variety of problems have been

treated in chemical kinetics encompassing temporal, steady-state spatial and

unsteady spatial systems.

B. Inverse Sensitivities

The forward sensitivities in paragraph A correspond to the logical

definition of the system parameters or input functions as independent variables

and the system observables as dependent variables. The original physical

problem is, of course, cast in this framework but many laboratory or field

measurements are actually done for the purpose of inversion to better quantify

a model. In this sense, one may use a "reasonable" zeroth order mode] and

the accompanying forward sensitivities to calculate corresponding inverse

sensitivities. These may be denoted as Oflj[([,t)/0_n(_r',t') and it is evident

that they give information on the infinitesimal response of the J[-th function in

the model to a disturbance of the n-th member of the observation set.

Knowledge of these gradients can be used as a means to design possible

experiments for the ultimate purpose of inversion. In principle, they may also

be employed in an iterative inversion process with real data. Thus far,

applications in chemical physics have been confined to the former case.

Illustrations have been performed for inverse molecular scattering and chemical

kinetics mechanism identification. These inverse sensitivities are the first

members of what has been referred to as derived sensitivities since they may

be derived from the forward set in paragraph A above. The forward and

inverse sensitivities are orthogonal complements of each other and more

generally they are related through Legendre type transformations familiar in

thermodynamics. Exactly the same techniques are employed to generate the

specialized sensitivities in paragraph C and D below.

C. Parameter Interrelationships

As implied Jn paragraph B, one may relax the constraints on the original

definition of the system dependent and independent variables or some portion

thereof. In this fashion, it is possible to calculate the possible response of

one system input function to a disturbance of another corresponding to the

gradients 6fll([,t)/Oflk(r',t'). Nonzero values for these parameter correlation

gradients would imply a relationship between the input functions under the

p__a_rti_'cularconstraint relaxing the role of the system dependent and independent

variables. The behavior of these gradients has implication [or the uniqueness

o[ the system model.

6



D. Observation Interrelationships

A family of gradients exactly analosous to those in parasraph C can be

8enerated to study the relationship between different possible observations or

dependent variables in a system. Tilts is a physically meaninsfu] question

since all possible observations or system behaviors derive from the same

under]yJn8 model. The particular gradients Jn this case have the form

{5_n([,t)/_)_m(r_',t') where it is understood that an implied exchanse of

dependent and independent variables has occurred. As with the inverse

8radients in parasraph B, these new sensitivities are also of use in the

desisn of laboratory or field measurements. Nonzero values for these

8radients imply a relationship between two possible observations and in that

case serious consideration should be siren to whether it is worthwhile to

actually perform both measurements. A hierarchy of observations could be

established based on the magnitude of these families of 8radients. Little

application has thus far been carried out a]on8 these lines.

E. Flux Disturbance Sensitivities

The Green's function introduced as the solution to Eq. (4) corresponds

to the literal situation of disturbin 8 one of the system dependent variables and

monitorJn 8 a response in another. Knowledse of such responses provides a

detailed map of the interconnectivity produced by the physical model. An

interestin 8 point in this resard concerns the fact that the dynarrdc response of

the actual model can be quite distinct from that implied by the Idnematic

structure of the differential equations. A mappin 8 of the system dependent

variable interconnectivJty can 8ire valuable insiEht into which components or

portions of a model are of actual sisnifdcance to the questions or observations

of concern. Green's functions are routinely calculated in a variety of

applications in chemical physics for these reasons.

F. Objective Function Sensitivity Analysis

As discussed in the introduction, many problems in chemical physics are

not posed with well understood observational objectives before actually

investisatin 8 the problem, indeed, the general role of sensitivity analysis in

chemical physics is often to simply identify interestin 8 objectives or model

components worth further study theoretically and experimentally. This

perspective is typically at variance with the situation found in ensineerin 8

where the problem is often first posed by statin 8 the desired objective, in

8eneral, any observable feature or objective of the system may be written as

a functional F[_] of the system dependent variable vector. Direct functional

differentiation of this object will probe the desired quantity of interest in a

stralshtforward fashion. An interestin8 point occurs when this objective can

be identified before actually solvJn 8 the model, in this circumstance, the well

know adjoint sensttivlty analysis method may be employed to eEficlentiy

calculate the sensltivittes of the system objectives. This latter procedure has

only been used sparsely in chemical physics thus far for the evident reasons

stated above.



G. Model Reduction

A natural objective in all modellin8 efforts is to reduce the system
complexity to a level suitable for the questions or tasks at hand. A

procedure such as this is sometimes referred to as ]umpins, and sensitivity

coefficients provide information relevant to this goal. The forward sensitivity

coefficients in paragraph A may be exan_ned for this purpose and this is

routinely performed. Related more sophisticated manipulation of these forward
sensitivities can also be considered but much more work needs to be done in

this area to optimally draw on the full variety of sensitivity coefficients. An

ever present danser in system reduction is subsequent misuse of the simplified

model in situations contrary to the assumptions under]yJn8 the lumping
procedure; in general, model reduction needs to be performed again for each

new objective.

H. Model Expansion

Although model reduction using sensitivity or other techniques represents

a well established objective, a much more difficult approach to mode]

improvement entails the expansion of an oversimplified model to a proper ]eve]

of sophistication. In 8eneral, this problem is not well posed, but there is a

simple quantitative indicator of model expansion that can be performed using

sensitivity analysis. In particular, a common circumstance arises when the

actual model calculations are performed on a simplified system drawn from a

larser body of facts or information as input. For example in the case of

chemical kinetics, often hundreds of possible chemical reactions could be

identified as potentially important beforehand while typically only a small subset

would actually be included in the first zeroth order model. In essence, one

may view the results of such a calculation as involving the full extended mode]

but with the appropriate parameters set to a null value. Although the nominal

solution clearly does not contain these parameters, the gradient of the

solution may still be nonzero. Therefore, the sensitivity o[ the additional

parameters about their nominal null values can be quite easily calculated if

(a) an extended "shoppin 8 list" o£ possible additional system components is

available and (b) if the additional components do not introduce further

dependent variables. Such a sensitivity to missing model components can be

used to que lik_@ly new parameters for introduction into the model at their

finite realistic values, limited applications of this type have been carried out
in chemical kinetics.

I. Parameter Space Mappin8

Both functional and parametric 8radient sensitivity analysis techniques are

inherently local in nature in that the gradients are evaluated at a nominal

point in parameter or input function space. Such an analysis seems often

quite adequate to establish which aspects of a model are important. As

commented earlier, this latter 8oal is often the primary motivation for

applications in chemistry and physics. On the other hand, in ensineerJng

and certain scientific applications optimization is the ultimate objective.



Inherently, an optimization entails a search through parameter space and

gradient techniques have an evident limitation. No satisfactory solution is

available for circumventing this difficulty, but some interesting new tools

involving Lie group techniques seem especially attractive. This approach

considers the calculation of a lie generator (first order differential operator)

for prescribing transformations throughout the parameter space. At this stage

only preliminary mathematical analysis and elementary applications have been
considered.

CONCLUDING COMMENTS

Sensitivity analysis clearly provides a powerful set of systematic tools to

analyze models for their physical content and mathematical behavior. Although

extensive applications to scientific problems are relatively recent, there is

much to be gained by an exchange of techniques and ideas between the

engineering and scientific disciplines. Finally, one caveat always worth

keeping in mind is that the conclusions of a sensitivity analysis will always be

predicated on the si8nificance or validity of the underlying model. However,

such caution should never be used as an ar8ument to not perform a

sensitivity analysis, since any model calculations without a sensitivity analysis
will be far tess worthwhile.
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SUMMARY

It has been shown by Fiacco that convexity or concavity of the optimal value

of a parametric nonlinear programming problem can readily be exploited to calculate

global parametric upper and lower bounds on the optimal value function. The

approach is attractive because it involves manipulation of information normally

required to characterize solution optimality. We briefly describe a procedure

for calculating and improving the bounds as well as its extensions to generalized

convex and concave functions. Several areas of applications are also indicated.

INTRODUCTION

We are concerned here with parametric nonlinear programming problems of the
form

min f(x,t) s.t. g(x,t) > O, h(x,t) = 0 P(t)
X

where f is a real valued function, g and h are vector valued functions, and t is

a parameter vector. The optimal value function of P(t) is defined by

f*(t) = min { f(x,t): x 6 R(t) }

where R(t) is the feasible set of the problem P(t) given by

R(t) = { x : g(x,t) > O, h(x,t) = O }

In this paper we describe a procedure, originally proposed by Fiacco (refs.l,2),

for calculating piecewise-linear continuous global upper and lower parametric bounds

on the convex (or concave) optimal value f*. We also show how these bounds can be

improved in a systematic manner until a desired accuracy, as measured by the

maximal deviation from the optimal value over the interval of parameter values, is

achieved. Extensions of this approach to generalized convex and concave optimal

value functions are discussed as well and current experience with applications is
described.
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COMPUTABLE BOUNDS ON CONVEX OPTIMAL VALUE FUNCTIONS

Consider the parametric problem P(t) and assume that its optimal value

function, f*(t), is convex. This will be the case if P(t) is a jointly convex

program, i.e. if f is jointly convex in x and t, the components of g are jointly

concave in x and t, and those of h are jointly linear affine in x and t (ref. 3).

The assumptions on g and h can actually be generalized by requiring only that the

map R is convex (ref. 4).

Suppose now that we have evaluated f*(t) and its slope at two distinct values
t I and t_ of the parameter t, where (for simplicity) t is assumed to be a scalar.

Then, global definitional properties of convex functions immediately provide global

parametric continuous, piecewise-linear bounds via linear supports and linear

interpolation on the graph of f* over the line segment (tl,t2). This is illustrated

in figure i.

Practical implementation of bounds calculations requires only the information

provided by most standard nonlinear programming algorithms. In particular, the

solution of the problem P(t) as well as the associated optimal Lagrange multipliers

must be determined for two distinct parameter values. The Lagrange multipliers will

coincide with derivatives of f* in case f* is differentiable and with subgradients

of f* in case when f* is nondifferentiable and convex. In both cases the

multipliers can be used to compute the lower bounds on f*.

Clearly, if f* is convex on the convex set SCE r, then any supporting hyperplane

of the epigraph at any t G S provides a global lower bound on f* over S. Both

upper and lower bounds calculations obviously apply over any interval (tl,t 2) in S,

provided that f* is convex over (tI. t2) A standard technique for studying f*

over (t I, t2) is to consider t(a) = at I + (l-a)t 2 and view f as a fuction of the

scalar parameter a @ (0,i). This allows for the simultaneous pertubation of all

components ti of t, which are now linear affine funtions of the scalar parameter a.

A byproduct of this practical approach is the observation that if the feasible

point to set map R is convex then x(a) = ax I + (l-a)x 2 G R(t(a)) if x I G R(t I) and

x2 @ R(t2). This leads to the simple calculation of a feasible parametric vector

x(a) of a problem P(t(a)) whenever the,condition is met. Hence we also obtain the
upper bound T (a) = f(x(a), t(a)) on f (t(a)) over (tl,t2). Since the calculation

of x(a) does not depend on f, this does not require f to be convex. If f is,jointly
then f is convex and f (a) is a convex bound on or above f andconvex in (x,t), * " --

below the linear upper bound given in figure i.

The parametric bounds on the optimal value function f* described above were

constrained to one-dimensional perturbations of the parameter vector t. However,

it is a simple matter to extend these bounds to multi-dimensional perturbations of

t.

Suppose, for example, that f* is convex on the convex set SeE r and that we are

interested in bounds on f_ for t in some polyhedron M contained in S which is

determined by its extreme points t I, t2, ..., t_. To obtain these bounds we need

only to determine the values and subgradients of f* at _ points tI ..... t_. T_is

• i)information will be available if we compute optimal solutions x (t and Lagrange

multipliers for _ nonlinear programs P(tl), i=l,...,l, similarly to the case of

one-dimensional perturbations. If, in addition, R is a convex map, then we can
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calculate a feasible parametric vector x(a), for the problem P(t(a)) with t(a) 6 M,
as a convex combination of _ solutions x*(ti), i=l .... ,i as well as a sharper convex

-- f*upper bound f (a) on .

The described approach for calculating parametric upper and lower bounds on
convex f* can be extended to the case of concave optimal value function f*. The
well known sufficient conditions for concavity of f* require that f be concave in t
for t G S and the feasible set R(t) = Nofor all t G S (that is R(t) must be fixed).
This result can be generalized to programswith perturbed feasible sets R(t) by
assuming that the mapR is concave (ref. 4).

If we now assume, similarly to the convex case, that f* is concave over the
interval (tl,t 2) and the values and slopes of f* are knownat two distin_points t 1
and t 2, then a linear interpolation on the graph of f* will provide a lower bound
while a piecewise linear upper bound will be determined by the slopes of f*. Figure
2 illustrates these bounds.

REFINEMENTSOFOPTIMALVALUEBOUNDS

In the previous section we described a procedure for calculating piecewise-
linear optimal value bounds on convex or concave f*(t) over the interval (tl,t 2) of
parameter values. Wealso showedthat a parametric feasible solution vector x(a),
a G (0,i), is an immediate by-product of this approach. This remarkably regular
behavior is exploitable in a number of waysas will be shownnext.

Consider a convex f*(t(a)), where t(a) = at I + (l-a)t 2, and view it as a
function of the scalar parameter a 6 (0,i) with upper and lower bounds on f* as
depicted in figure i. Supposethat we solve the program P(t(a*)) at some
intermediate value a* G (0,i). Then, this additional solution of P(t(a*)) enables

us $_ easily calculate sharper piecewise-linear continuous upper and lower boundson . Thesenew bounds on f* along with previous bounds are illustrated in figure
3.

Moreover, we can calculate a more accurate piecewise-linear continuous feasible
estimate x(a) of the parametric solution vector, which in this case is the linear
interpolation between contiguous optimal solutions of P(t(a)) at three values
a=0,a ,I. The feasible solution x(a) allows, in turn, the computation of a sharper
piece-convex continuous upper bound on f*, given by f (a) = f(x(a),t(a)).

Similar sharper piecewise-linear continuous upper and lower bounds can be
computedfor a concave optimal value function f* by solving an additional program
P(t(a*)) at someintermediate value a* G (0,i). The improved bounds will be
analogous to those depicted in figure 3.

It is clear from figure 3 that by repeatedly solving the program P(t(a)) at
intermediate values of a, the bounds on f* may be quickly and significantly improved.
The value a* of the parameter at which the problem was solved is the value where the
deviation between the current upper boundU and lower bound L, i.e., U(a) - L(a),
is the maximumover the considered interval (0,1). This is an appealing choice,
although other choices might,be dictated by other criteria or user interest; eg. it
might be important to know f (a) accurately only for certain subintervals or certain
choices of a.

13



EXTENSIONS OF BOUNDS TO GENERALIZED CONVEX OPTIMAL VALUE FUNCTIONS

The approaches for calculating parametric optimal value bounds described

earlier can be extended in several ways to include much wider classes of parametric

programs. This means that optimal value bounds are much more widely applicable than

is apparent from the results of the previous sections.

The first extension is obtained by considering structured classes of generalized

convex and concave optimal value functions. Suppose that map R is convex and that

f is quasiconvex in (x,t) for t 6 (tl,t2). Then, f* is also quasiconvex (ref. 5)

and therefore a constant upper bound of f* given by max {f*(t I) f*(t2)} is

readily available as well as a sharper quasiconvex upper bound f (a) = f_(a),t(a)).

Additional classes of convex and nonconvex programs for which parametric upper

bounds on f* can be computed are those where the objective function and,

consequently, the optimal value function F* are strongly convex, strictly

quasiconvex and strictly pseudoconvex (ref. 5).

Analogous results can be obtained in the concave case. Assume, for example,

that the feasible set R is arbitrary and fixed and that f is quasiconcave in t for

t G (tl,t2). Then, quasiconcavity of f* follows (ref. 5) and min {f*(tl), f*(t2)}is

a constant lower bound on f*

The second extension is possible by considering generalized convex programs

which are transformable into standard convex programs. Consider program P(t) with a

convex feasible map R and an F-convex objective function f. That means that the

composed function fF (x,t) = F{f(x,t)} is convex in (x,t) where F is a continuous,

one-to-one function (ref. 6). Thus the optimal value function fF* of a modified

problem PF(t)

min fF(x,t) s.t. g(x,t) _> O, h(x,t) = 0 PF(t)

is convex and therefore piecewise-linear upper and lower bounds on fF , given by

L(t) j fF*(t) < U(t) can be calculated. Then, since fF*(t) = F{f*(t)}, one

immediately obt--ains the following bounds on f*(t) (provided that F is nondecreasing):

F -I {L(t)} < f*(t) < F-I {U(t)}. These bounds are in general nonlinear and

nonconvex but, nevertheless, can be calculated without difficulty once the program

PF(t) has been solved.

EXPERIENCE WITH APPLICATIONS

Several preliminary studies have been conducted to investigate some of the

more immediate computational and practical implications of the outlined approach for

generating global parametric upper and lower optimal value bounds. The procedure

for calculating optimal value bounds for both convex and concave optimal value

functions was implemented by Fiacco and Ghaemi (ref. 7) as an additional module in

the penalty-function based sensitivity-analysis computer program SENSUMT.

Fiacco and Ghaemi (ref. 8) studied a geometric programming model of a stream

water pollution abatement system and calculated bounds on the convex optimal value

(defined as the annual cost of operation) of an equivalent convex program. The

indicated water pollution bounds calculation involved the perturbation of a single

right-hand-side parameter, the allowable oxygen deficit level in the final reach of

the stream, that proved to be the most influential parameter in the prior sensitivity

study.
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Subsequently, Fiacco and Kyparisis (refs. 9, 10) utilized SENSUMT to calculate

bounds on the optimal value function for the same water pollution abatement model

when 30 (not all right-hand-side) most influential constraint parameters were

perturbed simultaneously. In this application, the optimal value function was not

convex in full neighborhood of the base value of the parameter vector. However,

it was possible to show that the restriction of f*(t) to the subset of parameters

involved in the desired perturbation is convex.

In another study involving the convex equivalent of a geometric programming

model of a power system energy model, to find the turbine exhaust annulus and

condenser system design that minimizes total annual fixed plus operating cost, Fiacco

and Ghaemi (ref. 11) used SENSUMT to obtain bounds on the optimal value function for

a variety of single objective function and constraint parameter changes. A novelty

of this anlysis is the exploitation of problem structure to calculate a nonlinear

lower bound on the optimal value function. In addition, parametric bounds are

computed on the optimal value which is concave for certain perturbations of

objective function parameters.
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OUTLINE

Optimum sensitivity is defined as the derivative of the optimum design with

respect to some problem parameter, P. The problem parameter is usually fixed

during optimization, but may be changed later. Thus, we can use optimum sen-

sitivity to estimate the effect of changes in loads, materials or constraint

bounds on the design without expensive re-optimization.

Here, we will discuss the general topic of optimum sensitivity, identify

available methods, give examples, and identify the difficulties encountered in

calculating this information in nonlinear constrained optimization.

i. NEEDS

2. DEFINITIONS

3. AVAILABLE METHODS

4. EXAMPLES

5. CONCLUSIONS
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THE NEED FOR OPTIMUM SENSITIVITY

In many situations, we not only want to find the optimum, but we also want to

know how sensitive the optimum is relative to a certain parameter (i.e. how

stable the optimum is).

When parameter P changes, optimum sensitivity can be used to estimate the

changes in the optimum design variables and objective function without expensive

re-optimization.

In multi-level optimization, we need the derivative of the lower level op-

timum with respect to the upper level design variables.

i. FIND THE CHANGE IN THE OPTIMUM DESIGN DUE TO CHANGES IN LOADS,

MATERIALS, OR OTHER DESIGN SPECIFICATIONS

2. AVOID RE-OPTIMIZATION

3. PROVIDE NEEDED INFORMATION FOR MULTI-LEVEL OPTIMIZATION

20



THE DEFINITION OF OPTIMUM SENSITIVITY

The mathematical definition of optimum sensitivity is given here. What makes

this unique from what we usually define as sensitivity analysis is that there is

an implied inequality constrained sub-problem. Because of this, it is possible
that the optimum sensitivity may not be continuous at P = pO.

OPTIMUM SENSITIVITY

DF*/DP = LIMIT [F(X*+AX*,P+AP) - F(X*,P)]/AP
AP-->o

DX___*/DP= LIMIT [AX___*/AP]
Ap_

WHERE F(X*+AX,P+A_P) IS FOUND FROM;

MINIMIZE F(X,P+AP)

SUBJECT TO;

Gj(X,P+AF) < 0

L U
xI < xI _ xi

J=I,M

I=I,N
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AVAILABLEMETHODS

Several methods have been proposed to estimate the optimum sensitivity of a
design with respect to parameter P. Each of these methods contains certain
assumptions, and these assumptions can be incorrect in somecases. The methods to
be discussed here are listed below.

i. BASEDONTHEKUHN-TUCKERNECESSARYCONDITIONSFORAN OPTIMUM

2. BASEDONTHECONCEPTOFA FEASIBLEDIRECTION

3. BASEDONA LINEARPROGRAMMINGMETHOD

4. BASEDONA FULLSECOND-ORDERAPPROXIMATION

22



METHOD1

The assumption contained in this methodis that all of the constraints that
are critical at the optimumwill remain critical when P changes infinitesimally.

Differentiation of the Kuhn-Tucker conditions gives n equations.

The assumption gives another K equation, where K is the numberof critical
constraints at the optimum.

This method requires second-order information.

Because of the assumption that all critical constraints remain critical, this
method does not recognize the discontinuity which may exist in the optimum sen-
sitivity.

This method gives no assurance that the answer obtained is correct.

METHOD i: BASED ON THE KUHN-TUCKER CONDITIONS

AT XJ Gj(X*) = 0 J g K

JeK

THIS LEADS TO THE SOLUTION OF THE FOLLOWING SET OF EQUATIONS;

WHERE

AIK = _2F(X*)-- + I %J _2Gj(X--*)
SXI_X K _XI_X K

J _ K

WITH SIMILAR EXPRESSIONS FOR BIK , C I AND D I
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METHOD2

This method treats the parameter as a new design variable. This enlarges the
design space to n+l. The assumption contained in this method is that, in the ex-
panded design space, the maximumimprovement or minimumdegradation in the design
is sought.

This method seeks the constrained steepest descent direction in n+l space to
give DX*/DP, and from this DF*/DP is calculated directly.

This method requires only first-order sensitivity information.

This method accounts for possible discontinuity of the total derivative.

As with the first method, there is no assurance that the result obtained is

correct.

LINEAR METHOD BASED ON FEASIBLE DIRECTIONS

LINEAR APPROXIMATION: LET XN+ 1 = P

MINIMIZE F(X) = F(X*) + VF(X*)'_

SUBJECT TO;

Gj(X*) + VGj(X_*)'S <__0 JeK

WHERE

S BOUNDED

S I = X I - XI IS EQUIVALENT TO S I = _XI/_P

EQUIVALENT PROBLEM:

MINIMIZE VF (X*) •S

SUBJECT TO;

VGj(X_*)'S < 0

S'S<I

JeK
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METHOD2B

Two extended forms are available to deal with the possible discontinuity of
the optimum sensitivity. This is necessary because the direction in which P is
changedwill determine the value of the sensitivity. If the value is different,
depending on the sign of delta-P, then this indicates that the design will follow
one subset of constraints if P is increased but a different set if P is decreased.

This method for dealing with the potential discontinuities of the optimum
sensitivity is somewhatdependent on the choice of the parameter C. Numerical
difficulties can be encountered in deciding the correct value of C.

DEALING WITH DISCONTINUITY DEPENDENT ON THE SIGN OF P

AP>0

MINIMIZE VF(X*)'S- C'SN+ I

SUBJECT TO;

V_Gj(X;)'S <__0 J gK

S'S<I

AP<0

MINIMIZE VF(X*)'S + C'SN+1

SUBJECT TO;

VGj(X_*)'S <__0 J gK

s's<z
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METHOD3

Here, we create a Taylor series expansion for the objective function and the
critical constraints. Taking the limit as delta-P goes to zero and keeping the
lowest order terms only produces the optimum sensitivity according to the
original definition. This process requires that we pay close attention to whether
delta-P approaches zero from the positive or negative side.

This method requires solving two resultant LP problems.

This methodrequires first-order sensitivities only.

If the numberof the constraints is less than the numberof design variables,
the LP problems do not have a unique solution.

If a unique solution exists, it is always the correct solution.

LINEAR PROGRAMMING APPROACH

USING THE DEFINITION OF OPTIMUM SENSITIVITY;

MINIMIZE VF(X*)'_X + _F(X*)/_P'AP + 0(AX,AP)

SUBJECT TO;

Gj(X__*,P) + VGj(X__*)" f_K + _Gj/_P'AP + 0(AX,AP) <_ 0

KEEP THE LOWEST ORDER TERMS WHEN AP-_0.

IF AP -_ +0 (AP>O):

MINIMIZE VF(X*)'AX/DP + _F(X_*)/_P

SUBJECT TO;

VGj(X_*)'AX/DP + _Gj/_P ! 0

THIS LEADS TO;

JgK

IF AP -_ -0 (AP<0):

MINIMIZE VF (X*)" AX/DP - 3F (X__*)/De

SUBJECT TO;

VGj(X*)'AX/DP - _Gj/3P __ 0 JgK

J=I,M
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METHOD4

Just as with method i, this method requires second derivatives. However,
here the second-order information is used directly as an approximate optimization
task.

The parameter P maybe treated as an independent design variable, or the
change in P maybe specified.

If a small change in P is specified, the method becomesa finite difference
method. When delta-P goes to zero, this method gives the exact answer to a second
order approximation.

The set, K, of retained constraints can include all critical and near criti-
cal constraints, or even the entire set of constraints. Therefore, as P is
changed, a totally newset of constraints can becomecritical.

Within the limits of numerical precision, this method will always give the

correct solution. The disadvantage is that this problem has a quadratic objective

and constraints and so must be solved by nonlinear programming. It is, however,

quite efficient since it is an explicit problem.

If an attempt is made to simplify this method by linearizing it, the result

is the set of two LP problems given in method 3.

FULL SECOND-ORDER APPROXIMATION

SOLVE THE FOLLOWING EXPLICIT APPROXIMATE PROBLEM:

FIND THE CHANGE S THAT WILL

MINIMIZE F(X*,P) +VF(X*,P)'_ + 0.5STHF_

SUBJECT TO;

Gj(X_*,P) + VGj(X_*,F)'_ + 0.5sTHj_O J _ K

S BOUNDED
m
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ANOPTIMUMCURVE

WhenP changes, the optimum points X form a curve in n+l space. The optimum
sensitivity DX /_P is represented by the tangent of this curve. The curve can be
nonsmooth, so DX /DP can be discontinuous.

An infinitesimal change in P may cause the curve to leave a currently criti-

cal constraint. This demonstrates the potentially discontinuous nature of optimum

sensitivity.

P

×

28



DISCONTINUOUSDERIVATIVES

This is another graphical example of the discontirmous derivative problem.
In this case, the constrained optimum is found for P=0 to lie on the constraint
boundary. Nowif P is increased, the optimumsensitivity will point to the uncon-
strained minimum. On the other hand, if P is decreased, the optimum sensitivity
follows the constraint. Since the total derivative is the scalar product of the
gradient of the objective function with the vector S, it is clear that the optimum
sensitivity is not continuous at X*.

P

/

/
/

/

/

• F:O

-2
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ROTATING SHAFT OPTIMIZATION

This example demonstrates the usefulness of optimum sensitivity as an en-

gineering approach to frequency domain avoidance. Assuming it is required that

the rotating shaft not vibrate in the domain between 2.8 and 3.5 Hz, the shaft is

first optimized with respect to all other constraints. Then the sensitivity with

respect to the fundamental frequency is calculated and a new optimum design is

projected with a frequency below 2.8 Hz and with a frequency above 3.5 Hz. From

this it appears that it is far more economical to drive the frequency up than to

drive it down. However, this was not known in advance and so it was not known

whether the frequency should be bounded from above or below. Thus, optimum sen-

sitivity provides one means of dealing with a problem in which the design space is

disjoint.

F> F f-_T

OBJECTIVE: MINIMUM WEIGHT. CONSTRAINTS: STRESS, DISPLACEMENT, EULER BUCKLING,

SHELL BUCKLING. PARAMETER P: THE FIRST NATURAL FREQUENCY.

THE OPTIMUM WITHOUT ANY FREQUENCY CONSTRAINTS: e I = 3.1, W* = 27,242

OPTIMUM SENSITIVITY

METHOD 2 METHOD 3 RE-OPTIMIZE

e I --<2.8

>- 3.5

W* +5,278 +5,278 +6,429

XI -1.65 -1.65 -1.72

X2 +0.33 +0.33 +0.44

W +417 +417 +169

X I +0.17 +0.17 +0.17

X2 -0.003 -0.003 -0.011
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10-BARTRUSS

Here the common10-bar truss was optimized and the sensitivity was calculated
with respect to the allowable stress in member9. It is known that the weight of
this structure can be reduced by increasing this allowable stress to a value of
37.5 ksi, but beyond that, no weight reduction is possible. At the initial
optimum, memberi0 was at its lower bound. Method 1 assumed, incorrectly, that it
would stay there, while method 2 recognized that this memberdimension should be
increased. Using method 3, the allowable stress in member9 was allowed to change
as an independent variable and this method projected that the optimum allowable
stress is 38.2 ksi, quite close to the actual value of 37.5 ksi. The case at the
bottom of the figure is for optimization at the 37.5 ksi value and shows the dis-
continuity of the optimum sensitivity.

360" ----->

f I00 K

i0

fl00 K

OBJECTIVE:MINIMUMWEIGHT. CONSTRAINTS:STRESS,MINIMUMGAGE.
PARAMETERP: STRESSLIMIT IN MEMBER9. INITIAL OPTIMUM09 = 30 KSI,

SENSITIVITY

CASEi: PARAMETER METHODi METHOD2 METHOD3

W* = 1545

DF*/DO9 -240.5 -238.4 -178.6

Sl0 0.00 0.17 0.16

o9 ...... 38.2

W_CASE2:09 =37.5 KSI, = 1498, METHOD2.

AO 9 0 DF*/DU 9 = 215.7 W*(35) = 1512

AO 9 0 DF*/DO 9 = 0.00

CALCULATED W*(35) = 1511
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CONCLUSIONS

Optimumsensitivity in linear programmingis a commonand widely used tool.
Research in optimum sensitivity for nonlinear problems has not been this success-
ful and it has been shownhere that none of the methods is completely
satisfactory. Methods 1-3 often do not provide the correct answer, while method 4
requires second-order information that may be costly to obtain, as well as the
nonlinear optimization of the approximating functions.

The reasons for these difficulties are now beginning to be understood. If
the optimum design is fully constrained and unique, the optimum sensitivity can be
reliably calculated, just as in linear programming. However, if the design is not
fully constrained (fewer active constraints than design variables), the optimum
sensitivity using first-order information will not be unique and second-order in-
formation is essential. Unfortunately, this is the usual case in engineering
design. The reason that first-order information is inadequate is that the higher
order terms cannot be ignored as delta-P goes to zero in the limit.

The need to calculate the optimum sensitivity is a clear one and often jus-
tifies considerable effort. It is this information that is needed to makemany
fundamental design decisions. Therefore, improved understanding of these concepts
is useful in the search to extract the maximuminformation from the optimization
process.

i.

.

.

.

IN GENERAL, THERE ARE SITUATIONS WHERE NONE OF THE AVAILABLE METHODS EXCEPT

THE FULL SECOND-ORDER APPROXIMATION WILL GIVE THE CORRECT ANSWER

ITERATIVE METHODS USING FIRST-AND SECOND-ORDER INFORMATION SHOULD BE
INVESTIGATED

IF SECOND-ORDER INFORMATION IS AVAILABLE, METHOD 4 WILL PROVIDE USEFUL

ENGINEERING WHICH ACCOUNTS FOR NEARBY CONSTRAINTS THAT MAY BECOME CRITICAL

WHEN PARAMETER P IS CHANGED

FURTHER RESEARCH IS NEEDED; THE USEFULNESS OF OPTIMUM SENSITIVITY HAS BEEN

CLEARLY SHOWN IN PAST WORK
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Introduction

During the past few years it has been recognized that combining passive structural

design methods with active control techniques offers the prospect of being able to find sub-

stantially improved designs (Refs. 1-3). These developments have stimulated interest in aug-

menting structural synthesis by adding active control system design variables to those usually

considered in structural optimization. An essential step in extending the approximation con-

cepts approach (Refs. 4-6) to control augmented structural synthesis (Ref. 7) is the develop-

ment of a behavior sensitivity analysis capability for determining rates of change of dynamic

response quantities with respect to changes in structural and control system design variables.

Behavior sensitivity information is also useful for man-machine interactive design as well as

in the context of system identification studies. In this work behavior sensitivity formulations

for both steady state and transient response are presented and the quality of the resulting
derivative information is evaluated.
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Augmented Equations of Motion

Consider a structural/control system that can be modeled as an assemblage of frame,

truss and axial actuator elements. When such a system is subjected to harmonic loading con-

ditions the steady state response is of primary interest. It is assumed here that: (1) direct out-

put feedback control is used; (2) actuators and sensors are collocated; and (3) the

structure/control system can be represented by a linear model. Let it also be understood that

the topology, geometric layout, structural material and actuator positions are preassigned

parameters while section properties and gains are selected as design variables.

Dynamic analysis is carried out using the finite element method and Eq. 1 represents

the equations of motion including viscous damping [C], structural damping i_K], harmonic

applied loads {P(t)} k and control forces {N(t)}k. The control forces {N(0}k are given by Eq.

2, where [Gp] k and [Gv]k denote the system level position and velocity gain matrices for the

k th load condition. Substituting Eq. 2 into Eq. 1 gives Eq. 3, the equations of motion for the

control augmented system, where [CA] k and [KA]k, respectively (Eqs. 4 and 5) are the aug-

mented damping and the augmented stiffness matrices for the _h load condition. For the case

of axial actuators used here the system level position and velocity gain matrices are easily

generated following assembly procedures similar to those commonly used in finite element

analysis.

[M]{X} k+ [C]{X}k + (I + iy)[K]{X}k= {N(t)}k+ {P(t)}k

k = 1,2,...K d

(1)

{N(t)}k= -[G,]dX}k-[GpIdX}k
(2)

'[M]{a}k+ [CA]dX}k+ [KA]dX}k+ i_Kl{X}k= {t'(t)}k

[¢A]k= [C] + [GJk

[KA]k= [K] + [Gplk

(3)

(4)

(5)
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Dynamic Response Solution

The steady state dynamic response for harmonically loaded (see Eq. 6) damped struc-

tures augmented by a linear direct output feedback control system can be obtained via a fre-

quency response analysis as follows. Substituting Eq. 6 into the control augmented equations

of motion (Eq. 3) leads to Eq. 7, where the complex displacements {X}k are represented by

Eq. 8. It is well known that the steady state solution of Eqs. 7 has the form shown in Eq. 9.

Substituting Eq. 9 into Eq. 7, eliminating e if_kt from both sides, and equating the real and ima-

ginary parts leads to a partitioned matrix equation (Eq. 10). For the general case, Eq. 10

represents a 2n x 2n set of indefinite, non-symmetric linear simultaneous algebraic equations

in the unknowns {CR} k and {Ci}k, where n equals the number of degrees of freedom in the

system model. For the special case treated here (i.e. collocated axial actuators and sensors) the

efficiency of the solution process can be improved because [KA] k and [CA] k are symmetric and

Eq. 10 can be rewritten in the symmetric form shown in Eq. 11.

{P(0}k = {P}k e_

[M]{X'-'}k+ [C/t]k{X--}k+ [KA]k{X--}k+ i_[K]{X}k = {P}keit-_

{x}k = {XR}k+ i {X_}k

(6)

(7)

(8)

{X--}k = {_-} in_t = ({CRlk + i{Cl}_eit_

(9)

nk[CAlk+ _[K] { {C_}k
(10)

k = 1,2,...K d.
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Dynamic Response Solution (cont.)

The amplitude of the steady state dynamic displacements can be obtained as follows.

Solve Eq. 11 for the primary unknowns {CR} k and {C1}k. Note that e inkt can be expressed in

the alternate form given by Eq. 12. Then it follows from Eqs. 8 and 9 that the steady state

dynamic response is given by Eq. 13 where {XR} k and {XI} k solve Eq. 1 when the loading

function has the form of a cosine or a sine respectively. When the loading function is

sinusoidal the amplitude of the dynamic displacement for the fh degree of freedom is given

by Eq. 14. It is worth noting that Eq. 14 is a relatively simple explicit nonlinear expression

for the amplitude of the steady state dynamic response in terms of the primary unknowns of

the analysis, namely {CR} k and {Ct} k.

(11)

e it'lla = cos_kt + i sin f_kt

(12)

{/_}k = {XR}k + i{XtIk = ({CRIk cosflF- {Ct}k sint'lkt)

+ i({CR} k sin[l: + {Ct} k cos_:)

(13)

(14)
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Behavior Sensitivity Analysis

Approximate values of the amplitude for the jth degree of freedom under the k th load

condition ([X jkl) will be obtained by constructing first order Taylor series approximations for

the primary unknowns of the steady state response, namely C Rjk and C Ijk" Equations (15a)

and (15b) show the first order Taylor series approximations for the primary unknowns of the

steady state response analysis and they are linear in the design variables (i.e. element proper-

ties). Note that the subscript 0 refers to the base design for which an analysis is available.

Substituting Eqs. (15 a,b) into Eq. (14')gives the desired explicit approximation for the ampli-

tude of the jth degree of freedom under the k th load condition. It is apparent that the first par-

tial derivatives of the primary unknowns evaluated at the base design must be known in order

to evaluate approximate values of the amplitude. These behavior sensitivity derivatives are

readily found by implicit differentiation of Eq. 11' (i.e. Eq. 11 written in compact notation

where [A]k = _k[CA]k + 7[M] and [B] k = [KA] k - f_ [M]) with respect to the design variables

d r, which leads to Eq. 16.

IX jk I : (C _jk+C_,) v'
(14')

(15a)

(15b)

in] -[A] {GIk _ }
(11')

_[A...J.]

aa, aa,

oa, aa,
{{CRIk'] [[Al I [B] ]+ t --7I ;

k

a{CRIk

a{GIk

aa,
(16)
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Behavior Sensitivity Analysis (cont.)

Equation 16 is written in a more compact notation in Eq. 17 and it becomes apparent

on examining Eq. 17 that the form of this sensitivity analysis is very s_tilar that which

• KO{X}k I _K t°
arxses for the case of linear static analysis (i e _ = {V}rk =- I "U-_'_ / {X}k)" The"" _ar [ oar J

terms on the right hand side of Eq. 17 play the role of pseudo-load vectors that are easily

evaluated once the primary unknowns of the analysis have been determined for a base design

bi solving Eq. 11. The solution of Eq. 17 for the desired first derivatives

O{CR}k _{c_}k /
and _ [ require relatively little effort because the 2n x 2n matrix in Eq. 17

J
was previously decomposed into LDL r form when the primary analysis was executed by solv-

ing Eq. 11. Furthermore, the computational efficiency of the primary sensitivity analysis

(solving Eq. 17) can be enhanced by employing the well known partial inverse method to

obtain only the desired partial derivatives. (Ref. 5).

(17)

b[ah i)[Blk

{Vii,k= _a, {CRh Oa, {Gh
(18)

b[B]k b[Alk

{VRI,k= _a, {CRh+ _----_,{Gh
(19)

] b[Calk-ggtAlk= a,
(20)

_--_,tBlk= _--_, tXAlk-n - Oar
(21)
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Numerical Example - Steady-State Response

The quality of the steady state dynamic response behavior sensitivities is evaluated for

the planar grillage shown in Figure 1. The grillage consists of nine aluminum box beams and

is cantilevered at node 1. A dynamic load P(t) = 100.0 N sin (5.0 Hz)t is applied slightly off

the centerline of the grillage at node 8 so that both symmetric and anti-symmetric modes par-

ticipate in the response. Three active control elements placed at nodes 5, 6, and 7 act in the

vertical direction. Two percent structural damping is assumed.

Taylor series approximations based on direct and reciprocal element properties are

compared with the exact results for the maximum steady state vertical displacements at node 7

for various design variables (See Figures 2 through 6). One can see that the difference

between the approximations and the exact displacements is relatively small even when consid-

ering 30 to 40% changes in the primary load-carrying member (i.e., 30 to 40% changes in the

bending inertia for element 1).

In order to study the behavior of the approximations in a near-resonance condition, a

harmonic loading of frequency 20 Hz is applied at node 8. This loading will excite the

flapping - type 5th mode (]5 = 1.9.63 Hz) of the grillage.

Figures 7 and 8 bring out two major difficulties associated with resonance or near-

resonance situations: (1) the high nonlinearity of the exact response curve; and (2) the non-

convexity of the design space. Nonlinearity of the response curve results in the Taylor series

approximations being of acceptable quality in only a limited interval near the base point (i.e.

+ 10%). Nonconvexity of the design space could lead to local minima in an optimization con-

text. These difficulties lead one to use frequency constraints to avoid the near-resonance con-

ditions in optimum design problems.
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Transient Response Equations of Motion

In applications where the external loading is either not harmonic or cannot be conser-

vatively replaced with an equivalent harmonic loading, peak transient response is a primary

concern. Furthermore, nonlinear on/off controls are well suited to controlling transient

response and they are practical for space-based structures.

The dynamic equations of motion for a finite element representation of a linear struc-

ture augmented by a discrete actuator control system are given in equation 22 where {P(t)} is

the nodal load time history, {u} is a vector of actuator output forces, and [B] is a matrix of

zeroes and ones locating the discrete actuators, at nodal degrees of freedom. Vectors of

observed displacements and velocities, {Y} and {Y}, respectively, are available from the con-

trol system sensors and are given in equation 23 where [C] is a matrix of zeroes and ones

locating the discrete sensors at nodal degrees of freedom. The actuator output forces, {u}, are

chosen in a manner which reduces the system response based on the sensor measurements. In

particular, the output force for the nth actuator is given in equation 24 where _-n is the output

magnitude for the control system and en is the velocity threshold.

Transformation of equation 22 from physical space to modal space yields equation 25b

where modal damping has been introduced into the system through the _ parameter. The

uncoupled modal equations in 25b are easily solved for the modal coordinates using the

Wilson-0 time-stepping scheme and physical displacements are recovered using the modal

transformation in 25a.

The kth modal second order equation of motion can be written in the equivalent first

order form given by equation 26 where n I = q and n 2 = q.

[MI{J:}+ [KI{X}= {P(t)}+ [Bl{u}
(22)

{¥} = [c]{x}
(23)

0 if IIAnl<en
u,,= -_-nif IYnl:>e_and Y.'n>0

fi'n if IY l>  and Yn<0 (24)

{X} = [¢l{q} (25a) i/k + 2_kO__ + ¢O_q = Qk + Zk

(25b)

4O

(26)



Calculation of Behavior Sensitivities

Time dependent transient response sensitivities can be obtained by differentiating the

modal transformation given in equation 25a with respect to each design variable (beam ele-

ment section properties and actuator output force levels) to yield equation 27. The first term

in equation 27 is known from the system response solution and the eigenvector sensitivities.

The { o__.q,} quantity in the second term is the last desired quantity.
Oar

The direct way of obtaining these partial derivatives is to differentiate equation 26 (or

equation 25b) with respect to each design variable to obtain equation 28 and time step on

these equations. The computational effort needed to obtain {-_d} would be KR time step-

ping solutions where K is the number of retained modes and R is the number of independent

design variables.

A more efficient way to obtain this last desired quantity is to exploit the special form

of equation 26 by applying the Wilkie-Perkins essential parameter method (Ref. 8). Writing

equation 26 in compact notation yields equation 29a where the [A] matrix in equation 29b is

in Frobenius canonical form with 0_ I = 0) 2 and o_2 = 240) being referred to as essential param-

eters. A sensitivity matrix [_] can be defined as in equation 30. As a consequence of the [A]

matrix being in canonical form, two beneficial properties of the sensitivity matrix are: (1) the

sensitivity matrix has a total symmetry property resulting in all terms on a single anti-diagonal

being equal; and (2) the sensitivity matrix has a complete simultaneity property resulting in all

sensitivity functions for the canonical system being linear combinations of the modal
On 1 3n 1

response, n 1 and n2, and _ and _¢x"-"_" The equations shown in 31a and 31b result from

these two properties.
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(27)

O,il

oa,

Oti2

) --.

0 0

oo)_ a(2_@))
--_/ _

{h} = [A]{n}+ {b} Q + {b} Z (29a)

(28)

(29b)

OnI Onl

Ooh B%

a_ o,12 (3O)

On.....L= an2 (31a)

Bw_ c3ctI

c3_ i)n I an 2 On I (31b)
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Calculation of Behavior Sensitivities (cont.)

Evaluation of the {-_.d. } term utilizing the Wilkie-Perkins essential parameter method

is done by: (1) differentiating equation 29a with respect to oq to yield equation 32; (2) time

stepping on equation 32; (3) chain ruling from essential parameter space to design variable
0q

space via equation 33. Thus the computational effort needed to obtain {--_-} has been

reduced from KR time stepping solutions to K.

It should be noted that this method of obtaining behavior sensitivities can only be used

for the passive structural design variables since the essential parameters are independent of the

active control design variables. Sensitivities of the transient dynamic response with respect to

the active control design variables can be obtained by differentiating equation 26 with respect

to the active control design variables to yield 34. Equation 34 is time-stepped for the desired

terms.

, %

a,i_ i

{:}I1...,_[oo]. o.
a,i2] -1 o _-_

.a -SJ

o_nl
m

Ooq

o___
aoq

(32)

{aq } aq o_, Oq amoa, = o,_, o-W,+ om o-W,
(33)

p

0ht

aa,

ah2

ad,

0 1

(

G3n1

aa,
q

an2

aa,
(34)
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Numerical Example - Transient Response

The same aluminum planar grillage (see Fig. 1) used for the steady state response sen-

sitivities is used to examine the quality of the peak transient response sensitivities. The load-

ing consists of the force time history shown in Figure 9 applied at node 8. A single collocated

sensor/actuator pair is located at node 6 and acts in the vertical direction. Peak transient

response and peak transient response sensitivities were calculated by time-stepping through 1

second in 0.0005 second increments using ten retained modes (frequency content up to 100

Hz) and 2% modal damping.

Exact results for the peak positive and negative displacements at nodes 5 and 7 are

compared with both direct and reciprocal element property Taylor series approximations in

Figures 10 through 22 for a number of different design variables. For design variable changes

up to +20% the approximations are seen to be of acceptable accuracy. Furthermore, the direct

approximations for peak displacements as functions of the actuator force level agree extremely

well with the exact response curve (see Figures 19 through 22).

It should be noted that the degree of conservatism present in either the direct or the

reciprocal section property approximations is not necessarily correlated with its accuracy. For

instance, in Figure 15, the reciprocal approximation is more conservative than the direct

approximation, but is far less accurate for design variable changes greater than 20%.
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Conclusions

In this work behavior sensitivity formulations for both steady state and transient

response were developed and the quality of the resulting derivative information was assessed.

Derivatives of the steady state response with respect to both structural and control

design variables for harmonically loaded structures augmented by a linear direct output feed-

back control system were presented. The base design dynamic response was calculated using

a frequency response method which reduced the solution of the complex dynamical equations

of motion to the solution of a 2n x 2n set of linear algebraic equations. The response quantity

sensitivities were obtained directly using the psuedo-load method in its partial inverse form.

Taylor series approximations in both direct and reciprocal element properties were constructed

using this sensitivity information and shown to yield high quality approximations for 30 to

40% design variable changes provided near-resonance conditions are not encountered. When

resonance or near-resonance conditions are present, the approximations for the response quan-

tities are of acceptable quality for a relatively restricted interval around the base design.

Using a normal mode method of analysis, peak transient response and peak transient

response sensitivities were calculated for arbitrarily loaded structures augmented by nonlinear

on/off control actuators. The special form of the modal equations of motion was exploited to

reduce the computational effort needed to obtain transient response sensitivities. These sensi-

tivities were used to construct Taylor series approximations in both direct and reciprocal ele-

ment properties for peak transient response. The approximations are of acceptable quality for

structural design variable changes of up to 20%. The direct approximations in terms of the

controller variables compare very well with the exact response for up to 50% changes in the

design variables.

The results of this paper show that for control augmented structural systems, high

quality approximations for both steady state dynamic response and peak transient response can

be constructed. Therefore, the approximation concepts approach for structural synthesis can

be extended to include both steady state dynamic response (Ref. 7) and peak transient

response.
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SENSITIVITY METHOD FOR INTEGRATED

STRUCTURE/ACTIVE CONTROL LAW DESIGN

Michael G. Gilbert

NASA Langley Research Center

Hampton, VA

OUTLINE

This paper describes the development of an integrated

structure/active control law design methodology for aeroelastic

aircraft applications. The paper gives a short motivating

introduction to aeroservoelasticity and the need for integrated

structures/controls design algorithims. Three alternative

approaches to development of an integrated design method are

briefly discussed with regards to complexity, coordination and

tradeoff strategies, and the nature of the resulting solutions.

This leads to the formulation of the proposed approach which is

based on the concepts of sensitivity of optimum solutions and

multi-level decompositions. The concept of sensitivity of

optimum is explained in more detail and compared with

traditional sensitivity concepts of classical control theory.

The analytical sensitivity expressions for the solution of the

linear, quadratic cost, Gaussian (LQG) control problem are

summarized in terms of the linear regulator solution and the

Kalman Filter solution. Numerical results for a state-space

aeroelastic model of the DAST ARW-II vehicle are given, showing

the changes in aircraft responses to variations of a structural

parameter, in this case first wing bending natural frequency.

• Introduction

• Design Approach

• Sensitivity of Optimum

• Sensitivity of LQG Solution

• Integrated Design Results

• Concluding Remarks

__ pAGE BLANK NOT FILMED
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INTRODUCTION

Aeroservoelasticity is defined as the interaction of unsteady

aerodynamics, elastic structure, and automatic control systems
of an aircraft. This interaction can be either favorable and

unfavorable, that is it can be the source of dynamic responses
of the aircraft which force the redesign of the structure or

flight control system, or it can actually improve the

performance of the aircraft. Examples of aircraft which

exhibited aeroservoelastic problems include the F-16, F-18, and

the X-29, all of which required flight control system changes

before flight. The Lockheed LI011-500 on the other hand employs

an active load alleviation system to reduce wing loads and

improve range.

The state of the art in aeroservoelastic analysis is now to the

point where it is possible in many cases to predict
aeroservoelastic interactions before flight test of the vehicle.

With this capability in hand, the next logical step is to

develop design methodologies which use aeroservoelastic
interactions to improve aircraft performance. This paper

describes the initial development of one approach to this

interdisciplinary design problem, concentrating on integrated

design of aircraft structures and control laws.

• Aeroservolasticity Is The Interaction

Of Aerodynamics, Structures, And Controls

• Favorable And Unfavorable Interactions

• Analysis Methods Maturing

• Integrated Design Methods In Infancy
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DESIGN APPROACHES

There are three possible approaches to integrated structure/

control law design, or for that matter, any integrated design.

These are the simultaneous or combined approach, the series or

sequential approach, and the parallel approach. In the

simultaneous approach, the design problem is formulated as a

single problem by combining the objectives, requirements, and

design variables of the various disciplines into a single set.

The design variables are then selected simultaneously to satisfy

the design requirements and objectives. The drawbacks to this

approach are the resulting size of the design problem and the

difficulty of making reasonable tradeoffs when all the design
criteria are not satisfied.

In the series approach, the individual disciplinary designs are

performed in a logical sequence or series, with each discipline

selecting its own design variables to satisfy its own design

requirements. System performance is assessed at the end of the

sequence, and the process is repeated if necessary in an

iterative manner. Again, one of the drawbacks with this

approach is difficulty in making tradeoffs between disciplines,

although a more serious drawback is that the overall system

design is dominated by the discipline which is first in the

sequence. For example, if an aircraft structural design is

completed first, followed by the flight control design, and

unfavorable dynamic iteractions occur, most often the flight

control system design is changed extensively to improve the

overall dynamics while the structural design is held fixed, even

though moderate structural changes may be more effective.

A parallel approach to integrated design has the individual

disciplines performing their designs simultaneously but

independently. At the completion of the design iteration, the

overall system performance is checked and the individual designs
undergo iterations. Of course, some form of coordination must

occur during the iteration process or no improvement in the

system design will be possible. The coordination activity

requires that information about the individual designs and the

relationships of those designs to the other disciplines must be

available. This information is dependent on the actual design

methods that are used as well as the type and form of the design

requirements, objectives, and design variables. The kinds of

information, coordination, and design methods necessary for the

sucessful development of a parallel integrated design

methodology are still open research questions.
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DESIGN APPROACHES
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PARALLEL DESIGN

The successful development of a parallel integrated

interdisciplinary design methodology requires a coordination

strategy, the determination of disciplinary design information

requirements, and the selection of design tools for each

discipline which are compatible with the coordination strategy

and information requirements. Based on research conducted at

NASA - Langley Research Center and elsewhere, a multi-level

problem decomposition approach [1,2] is used to define a

coordination strategy for the integrated structures/control law

design method proposed here. This approach breaks the

integrated design problem down into a heirarchal structure that

naturally reflects the individual disciplinary design

requirements as well as the integrated system design

requirements and objectives. Selecting optimization techniques

for the individual disciplinary design methods allows the use of

the concept of the sensitivity of an optimum solution to fixed

parameters [3] to define the information requirements of the

hierarchical decomposition. That is, for the case of integrated

structure/control law design, the sensitivity of the optimum

structural design to control law design variables is passed to

the coordination level, as is the sensitivity of the optimum

control law design to structural design variables. This

information is used at the system design level to make design

tradeoffs between the disciplines in the interest of improving

the system design.

Design Methods: Optimization Techniques

[3]
Information: Sensitivity Of Optimum Designs

[1,2]
Coordination: Multilevel Problem Decompositions
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INTEGRATED STRUCTURE/CONTROL DESIGN

The selection of multi-level hierarchal problem decompositions,

optimization techniques, and the sensitivities of optimum

solutions leads to the integrated structure/control law design

methodology shown below. The control law and structure designs

occur simultaneously and in parallel, with the recognition that

the two disciplines interact in the actual aircraft. These

designs proceed on the basis of the individual discipline design

objectives and variables. For example, the structural design

might determine structural element sizing to minimize weight

while maintaining stress levels, while the control design picks

control gains to minimize control energy and maintain adequate

stability margins. The sensitivity of the optimum control

design to the structural element sizes, and the sensitivity of

the optimum structural design to the control law gains are then

computed, either by finite differencing of neighboring designs,

or by analytical sensitivity of optimum derivative expressions,

and passed on to the system level. This sensitivity data are

then used as gradient information at the higher level to

determine the most effective tradeoffs to achieve desired system

performance. A key aspect of the research reported here is the

development of analytical sensitivity expressions for the LQG

optimal control law problem, eliminating the need for finite
difference derivative calculations.

System

inputs

System

design

Sensitivity __ Sensitivity
/Parameters"'...,.

Control Structure

design design

Gains

Control

system

Performance

Inter-

action [

l
Sizes

Airframe

System
outputs
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GEOMETRICAL INTERPRETATION OF OPTIMUM SENSITIVITY

The concept of the sensitivity of an optimum solution of an

optimization problem to problem parameters which were held fixed

during the optimization is illustrated below. Consider a

conceptual optimization problem where an objective function

J(u,p) is to be minimized by choice of a design variable u, with

some design parameter p held fixed at some nominal value Po"

For a different nominal value of the design parameter, say Pl
the optimum solution of the problem will be different, as snown.

The sensitivity of the optimum solution with respect to the

design parameter p is then the change of the optimum value of

the objective function and the change of the design variable at

optimum due to changes in the parameter. One approach to

calculating these sensitivities is to finite difference

solutions of the problem due to perturbations in the parameter.

Another approach is to obtain analytical sensitivity expressions

by differentiation of the necessary conditions of optimality

with respect to the design parameter, and evaluating those

expressions at the optimum solution, as advocated in [3]. This

approach eliminates the need for numerous perturbed solutions of

the problem and the inaccuracies of numerical approximations of
the sensitivities.

au* u 1
aP
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COMPARISONOF SENSITIVITY TYPES

The difference between the sensitivity of optimum analysis and a
traditional sensitivity analysis in controls applications can be
highlighted as follows. Consider the time response of some

output Y(t,p) of an optimally controlled dynamic system due to a

specified input. For the nominal value of the design parameter

, the optimal control law is computed and the time response is
iculated. If the value of the design parameter was to change

to Pl, but the control law was to remain the same (that is the

control law that is optimal for p_), then the time response to

the same input would change, and a traditional sensitivity

analysis could be used to predict that change. On the other

hand, if a new control law which is optimal for Pl is used, the
time response would again be different from the original, and

from the perturbed control law time response as well. The

sensitivity of optimum analysis results can be used to predict

this new optimally controlled system time response analytically.

Y(t,p)

Optimum Optimal P1

control

!Traditio_ Perturbed Po
l --,,,.. control

_, .- _ control

T
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LQG PROBLEM FORMULATION

The optimal control law formulation to be used in the integrated

structure/control law design algorithim is the standard linear

time invariant system, quadratic cost, Gaussian distributed

noise (LQG) optimal control problem. For the purposes of this

integrated design methodology, the formulation consists of state

space equations of motion, where A is the system state matrix, B

is the control input matrix, C is the controlled output matrix,

D is disturbance input matrix, and M is the measurement matrix

defining the signals to be used for feedback. The vector x is

the system state vector, u is the control input, r is a vector

of external commands, and WD, Wu, and v are Gaussian distributed

white noise vectors with nolse intensity matrices WD, Wu, and V
respectively. The objective function J to be minimized is the

expected value of a quadratic function of the controlled outputs

y and the control inputs u, where the weighting matrices Q and R

are positive semi-definite and positive definite, respectively.

It is assumed that the matrices A, B, C, M, Q, R, and W. are

functions of the fixed design parameters p, for whic_ the

functional dependence and the derivatives of the matrix elements

with respect to the parameters are known. The solution to this

optimal control problem is known to be the interconnection of

the optimal linear regulator with the optimal Kalman Filter

state estimator [4, pg. 390].

/<= A(p)x+ B(p)(u+ r)+ DwD+ B(p)wu

y = C(_)x

z = M(_)x+ v

J = T-oo 2-T (yTQ(_)y+ R(_)u)dt

= I .... p . . . }T = vector of fixedparameters
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LQ REGULATOR SOLUTION AND OPTIMUM SENSITIVITY

The solution of the LQG optimal control problem is the

interconnection of the optimal linear regulator and the optimal

Kalman Filter state estimator. The solution of the optimal

regulator problem is an optimal feedback gain matrix G

determined by the solution for S of a nonlinear matrix Riccati

equation, where both equations come directly from the necessary

conditions of optimality [5, pg. 148]. The interconnection with

the Kalman Filter is defined by feeding back estimates of the

system states rather than the actual (unmeasurable) system

states. Differentiating the LQG solution equations with respect

to the parameter p gives an expression for the sensitivity of

the optimal gain matrix G which is in terms of the sensitivity

of the Riccati equation solution matrix S. The Riccati

sensitivity is obtained from the solution of the linear Lypuanov

equation that results from differentiation of the matrix Riccati

equation with respect to p. (Note that all the other derivative

matrices in the two equations are assumed to be known as part of

the problem formulation.) A property of the regulator solution

is that the matrix (A-BG) is asymptotically stable, guaranteeing

that a unique solution to the Lyapunov equation exists [4, pg.

i03].

Necessaryconditions

u = -R-IBT S _ = -G_

0 = ATS + SA - SBR -IBTs + CTQC

Differentiate necessary conditions with respect to p

%(3= _R_1%R R.IBTs + R-I.OBTS + R'IBl'OS
bp Op _)p _)P

O= (A_BG)T_)S+8S ,(_)AT _)A+ _ T(3QcOP _- (A-BG)+ {_)pS + "Op QC + C -_

cT OC ..laB -1 BT + -10BT\

68



KALMAN FILTER AND OPTIMUM SENSITIVITY

The optimal Kalman Filter solution is similiar to the optimal

regulator solution in that the optimal filter gain matrix K is

given in terms of the solution T to the filter nonlinear matrix

Riccati equation. Differentiation of these two equations with

respect to the parameter p gives the filter gain matrix K

sensitivity in terms of the sensitivity of the matrix

equation solution T. This sensitivity is calculated

linear Lyapunov equation obtained by differentiation

Riccati equation, which again is known to have a unique

because of the asymptotic stability properties

coefficient matrix (A-KM).

Riccati

from a

of the

solution

of the

Necessary conditions:
K = TMTv1

0 = AT + TAT + DWDDT+ BWu BT - TIviTv"IMT

Differentiate necessary conditions with respect to p:.

(_K _T M.I___= MTv"l . __ v"1

( K...i_T _T { c_A .c_AT (_Bw BT0 = A- M)_ + _-_(A-KM)T + -_- T+ ,%-_ + _ u

..OWu T (_BT-T V -1 M+ MTv i_p+ u-_- B + BWu a--p-
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OPTIMALLY CONTROLLED SYSTEM EQUATIONS

The state-space equations of the optimally controlled system can

be written in terms of the optimal gain matrices G and K by

defining a state estimation error vector e which in turn is used

to define a new augmented system state vector. The closed-loop

system equations are then as shown, with the new system state

matrix shown in partitioned form as a function of K and G. The

sensitivity of the new system state matrix with respect to p is

calculated in terms of known sensitivity derivative matrices and

the optimal gain sensitivities which have already been

calculated. These results are used with analytical performance

senstivity expressions, such as for eigenvalues and time

responses, to find the changes in optimally controlled system

performance due to changes in system design parameters p.

• !eTI wT--IwTl vT }Define. e _ x- _, _T = { xT , ,

ClosedLoop

y=_
u= _

B

;A, B:G-KM
-_A c_B (_G c_B (_G

_G-B_- , _--_G+ BE-{_ -

0 i _A (_K (_M
I,
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ANALYTICAL PERFORMANCE SENSITIVITIES

Analytical perform&nce senstivity expressions exist for numerous

dynamic system performance measures in terms of the sensitivity

matrices of state-space systems. These include eigenvalue and

eigenvector sensitivities [6], trajectory (time) and frequency

response sensitivities [7], sensitivity of covariance responses

due to random system inputs and disturbances [8], and singular
value sensitivities [9]. These results are used in the

integrated structure/control algorithim at the upper level as

gradient information to predict performance changes due to

changes in the structural design parameters.

• Eigenvalues/Eigenvectors

• Trajectory Responses

• Covarionce Responses

• Frequency Responses

• Singular Value Decompositions
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COMPARISON OF PREDICTED AND ACTUAL CHANGES

Numerical results have been calculated for an integrated design

study of the DAST ARW-II flight test vehicle. This application

involved the design of an optimal LQG control law and the

prediction of changes in the optimally controlled response of

the vehicle due to changes in a structural design parameter, in

this case first wing bending natural frequency. For example,

changes in mean square wing tip acceleration and mean square

aileron deflection rate due to changes in wing first bending

frequency for a 12 ft/sec RMS random wind gust environment are

shown below. The sensitivities of the mean square responses to

the structural parameter are the slopes of the solid and dashed

lines, with the lines themselves showing the predicted change in

performance if a new optimal control law was implemented for

various changes in the parameter. The symbols show the actual

change in performance which occurred when the parameter was

varied and the resulting new optimal control law was computed

and implemented. For + or - 10% variations in the wing first

bending frequency the sensitivity based predictions were

reasonably accurate. For larger variations, the predictions

were not as accurate, although the trends were correct. Note

that for reductions in wing first bending frequency, both the
acceleration and the control surface deflection rate were

reduced, whereas if changes were made only in the control law,

the acceleration could only be reduced at the expense of

increased aileron deflection rate. This indicates the potential

benefit of an integrated structure/control law design approach

to improved system performance.
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WING BENDING FREQUENCY VARIATIONS

Shown are two controlled system performance measure changes due

to changes in wing first bending frequency. The top plot is of

changes in the minimum singular value of the loop return

difference matrix with the control loops broken at the input to

the system. This measure is an indication of the stability

robustness of the system with respect to gain and phase

variations and unmodelled higher order dynamics, with larger

values over the frequency range implying greater robustness.

For reductions of 10% and 25% in the wing first bending natural

frequency, there is a slight rise in the minimum singular value

at the critical low regions between .i and 1 rad/sec and again

near! i00 rad/sec. The lower plot shows wing tip acceleration in

g's due to a commanded pitch over of the vehicle. For 10% and

25% reductions of nominal wing bending frequency there is a

small reduction in transient wing tip acceleration response to

the same manuever, although the steady-state acceleration is the

same. These results again indicate the possibility for

improvements in overall system performance due to integrated

structure/control law design, although other structural

parameters may provide more significant changes in performance

and thus be more useful from a design standpoint.
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CONCLUSIONS AND FUTURE RESEARCH

An approach to parallel integrated interdisciplinary design

using hierarchal decompositions and sensitivity of optimum

solution concepts is under development at NASA-Langley Research

Center. An implementation of this approach for integrated

structure/control law design problems of aeroservoelastic

aircraft is currently under way, and numerical results for an

example problem indicate that an integrated design could lead to

better overall system performance. The development and

implementation of the methodology have also shown that senstivity

of optimum solutions to problem parameters is required for

accurate gradient information at the top (system) level when the

parallel disciplinary design approaches are optimization based,

and that accurate predictions of performance changes due to

reasonable (+ or - 10%) variations in parameters are obtained

from the optimum sensitivity results. The continuing research

program is working toward the inclusion of more formal

structural optimization techniques, and to the development of

sensitivity expressions for other, more realistic, optimal

control law problem formulations.

• Sensitivity of Optimum Analysis Required When

Design Iterations Use Optimization

• Performance Changes Accurately Predicted
For Reasonable Parameter Variations

• Overall System Performance Can Be

Improved By Parallel Intergrated Design

• Need To Develop Analytical Sensitivity
Expressions For More Optimal Control Problems

• Need To Exercise Parallel Design

Methodology Fully
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N87-18861
THE CASE FOR AERODYNAMIC SENSITIVITY ANALYSIS

Jaroslaw Sobieszczanski-Sobieski

NASA Langley Research Center

Hampton, Va

This paper is somewhat unusual since it does not offer any specific

solutions, verified by applications, for its subject problem which is

sensitivity analysis in Computational Fluid Dynamics (CFD). Instead, the

paper makes a plea to the CFD community for extending their present

capability to include sensitivity analysis. The plea is made from the

viewpoint of an aeronautical engineer, not an expert in CFD methods, who

needs the sensitivity information when working at the junction of

aerodynamics, structures, active controls, and other disciplines whose

inputs need to be integrated in aircraft design. The principal message of

the paper is displayed on figure I.

THE MESSAGE

• Computational fluid mechanics is advancing rapidly its capability
to calculate aerodynamic forces on wing-body-nacelle-empennage
configurations

• Next logical step: capability to compute sensitivity of these forces
to configuration geometry, i.e., sensitivity derivatives

• Example: (_( lift)/(_ ( wing sweepangle )

• Urgent need:

• lntradisciplinary- aerodynamic shape optimization

,Interdisciplinary: integrating aerodynamics with
other disciplines

Fig. 1
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The intradisciplinary applications of the postulated sensitivity analysis

are obvious enough. It has now become quite common to optimize aerodynamic

shapes (illustrated at the bottom of figure 2 by the inset showing an

airfoil and an aircraft planform) by formal algorithms that iteratively

change geometrical variables shown in the inset. Figure 2 depicts one such

procedure composed of an OPTIMIZER which determines the increment of each

geometrical variable (design variable, x), TERMINATOR containing a logic for

stopping the iteration, and ANALYZER (a CFD program) whose task is to

calculate the aerodynamic objective function (F) and constraints (g) for the

geometry modified by the optimizer. Since most of the OPTIMIZER algorithms

commonly in use require derivatives of F and g with respect to the design

variables (x), it would be advantageous _or the efficiency and accuracy of

the aerodynamic optimization, i_ these derivatives were available in the

ANALYZER's output. Thus, the need for a finite difference approximation to

the derivatives, and the associated, costly, repetitive analysis would be

eliminated.

INTRA-DISCIPLINARY APPLICATION:

AERODYNAMIC SHAPE OPTIMIZATION

_ Initial _"/

1' Q
V

Termination I Termination

criteria I criteria

I i notsatisfied _
sati stied Termi nator

Optimization loop

New _ 7(= initial _" in first pass) /

I Pre-pr°cess°r]

[A° 'yzerI

I Post-processor I

I

Z Z= _J

Fig. 2
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Going beyond the confines of the discipline of aerodynamics, the aerodynamic
sensitivity information is needed to quantify the effect of the changes in
aerodynamic shape on other disciplines coupled to aerodynamics in the design
process. Figure 3 shows aerodynamics at a central position in the process,
its interactons with other disciplines depicted by two-headed arrows. The
meaning of the arrows may be illustrated by an example of a coupling between
the aerodynamics and structures. A changeof the aerodynamic shape causes a
change in the structural response, directly through the geometry and,
indirectly, through the aerodynamic loads. In the opposite direction, the
change in structural response will, of course, influence the aerodynamic
loads through the changeof deformation pattern.

To stay within a limited scope, the remainder of this discussion will
concentrate on the interaction amongonly three disciplines: aircraft
performance, aerodynamics, and structures, to show how the sensitivity
information, including the aerodynamic sensitivity, could be used toward
improving aircraft performance.

AERODYNAMICS INTERACTION WITH OTHER DISCIPLINES

IN AIRCRAFT DESIGN

• _ forces_ensitivity "mformation _ -- _, uuy,,d,,,!_

nneteed_dis_i[ieP:reyenotuplings <Structures_ their sens_tndty to shape

in system approach

Fig. 3
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To demonstrate that, figure 4 and the next two figures showwhat mayhappen
when a problem encountered in one subsystem, or engineering discipline, is
fixed by the meanslocal to that subsystem or discipline. An example of a
particular stage in the process of aircraft design will illustrate the
point. Supposethat at that stage, the configuration designers had already
set the value of the aspect ratio (AR), a typical configuration design
variable, so as to maximize the aircraft range (R) under the constraint on
the take-off gross weight (TOGWor T). In that decision, they accounted for
the influence of the aerodynamic drag, represented by CD, fuel weight Wf,
and structural weight, W on R and TOGW.Of course, manymore variables ares
involved in the real problem, but simplification of the example will help to
make the point.

In the above set of quantities, cD and Wf camefrom the analysis and
experimentation carried out by the group of engineers working with the
configuration and performance aerodynamics. In contrast, the value of
structural weight was available to that group only as a rough estimate.
Now, suppose that the process moveson into the phase of more detailed
structural analysis and design.

A CONVENTIONAL APPROACH"

LOCAL PROBLEM -- LOCAL FIX

Aircraft: Range R = fl (Ws'CD''")

R is objective function, R --, R
max

Ws -- structural weight

(I)

Constrai nt:

TOGW: T= f2 (Ws, Wf.... )_< TO (2)

Wf -- fuel weight

fl' f2 -- computable functions, may be
analytical expressions or computer
programs

Fig. 4
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At that stage, illustrated by figure 5 below, structural design has advanced
to the point where a flutter analysis was carried out. Let us assumethat it
showedthe flutter speed VF falling short of the required value Vfreq. With
the wing geometry (AR) having been already set and frozen, the structural
group fixed the flutter problem by stiffening the wing at the weight penalty
madeas small as possible, AWmin"

LOCAL PROBLEM, FLUTTER, FIXED BY A LOCAL MEANS

A STRUCTURAL STIFFENING

Airfra me:

VF

W
SO S

Aeroelastic optimization: &W -* &W

&W -- weight penalty

min

VF >/Vfreq

VF = f3(Ws)

Fig. 5
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The flutter weight penalty was sent back to the aircraft performance group
who added it to the initial estimate of Ws and had to compensate for it by

reducing the fuel weight Wf to keep TOGWwithin constraint (assuming
constant payload). The result is a change in performance (R) estimated by
eqs. I and 2 in figure 6.

GLOBAL (SYSTEM) CONSEQUENCES OF LOCAL FIX

Aircraft: Ws --, Ws + AWmi n requires reduced

fuel Wf --, Wf - AWf because of

constrained TOGW,

T--f2 (Ws'Wf .... ) = TO, hence

Range reduction: R = R0 + 8-_f "AWf
to the first order

approximation

Since AWf = -AWmi n

c_R . AW .
R = R0 + c_---W-- mln

S

(I)

(2)

Fig. 6
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Examination of the exampleunfolded thus far leads to the two
observations, shownin figure 7, that summarizewhat may happenwhena local
problem is fixed by local means, but has an impact on the system
performance.

TWO OBSERVATIONS

I. _R/OW s < 0 (of course), hence R--,R -AR.

(-AR) is the system performance penalty for a

subsystem modification.

2. The system configuration was not touched. The

constraint (flutter) w_s satisfied by purely local,

subsystem, means. Since AW = AWmin, the

system performance penalty is the smallest

achievable by the local means. To reduce it

further, one needs modification at system level.

Fig. 7
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This, and the next three figures, will show the potential for improving the
system performance by correcting the subsystem problem by design
modifications at both the local and system levels - a system approach. In
our example, that meansunfreezing the configuration geometry (AR) and using
it together with added structural material AWmin to meet the flutter
constraint, while reducing the penalty in the system performance (R)
subjected to the constraint on TOGW.

The upper box in figure 8 symbolizes the performance and configuration
aerodynamics group who sends the data on geometry (AR) and on the
aerodynamic loads magnitude and distribution Cp(_,B) to the structures group
depicted by the lower box. The former group's objective is to maximize R
under the constraint on TOGWby meansof changing the configuration geometry
AR. The latter group manipulates the structural cross-section dimensions to
meet the flutter constraint at the minimumweight penalty. That penalty is a
computable function of the geometry, (AR), and aerodynamic loads, c (theP
next to the last line on the figure). To the structures group these
quantities are constants, but the configuration group can control them by
meansof AR, thus influencing the AWmln. That influence can be quantified
by the chain differentiation shownon the bottom line on the figure.

In that line, the derivatives of f4 are derivatives of the optimum design
with respect to the constant parameters of the optimization - a type of
constrained derivative. Algorithms exist (refs. I and 2) for computing such
derivatives quasi-analytically, without engaging in repeated optimization of
perturbed geometry. The derivative of c is a CFDsensitivity derivativeP
postulated in this presentation.

SYSTEM APPROACH

(system) Objective: R

Constraint: TOGW, T ..< TO

/_ __'_..... Design variable: Aspect ratio, ,_

P ' __/_, Cp )
Local suboptimization-...,

Cp_ I Airframe I objective
(subsystem) AW --* AWmi n

A__/j_il "-'&Wmin : f4(/_,ep( a, 13)) Constraint:

VF >_ Vfreq

f4 8 f4 8 Cp Design variables:

_ - -_ + _pp " __ Structural dimensions

Fig. 8
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Here, we return to the system level with the information generated in the
discipline of structures. Under the system approach, the information has
been enhancedby the sensitivity of the flutter weight penalty to geometry,
quantified by the derivative of AWmin with respect to AR. The information
now available to the performance and configuration group, and originating in
that group's ownwork, is shownon line I, figure 9 (subscript/superscript
"0" refers to the design that has been accomplished and is now to be
modified). The first two derivatives are computable from the performance
analysis, and the third one was discussed at the end of the preceding
figure. The chain differentiation relates the range to geometry.

The extrapolation in eq. 2 using the optimumsensitivity derivative for
AW. with respect to ARestablishes an approximation to the flutter weightmln
penalty as a function of geometry. Substitutions shownby arrows into the
linear extrapolation for R in eq. 3 lead to the approximation of R as a
function of geometry in eq. 4. The first two terms represent the result
obtained previously under the rule of frozen AR. The square parentheses term
reflects the cumulative, first order effect of geometry on performance,
exerted through a multitude of interdisciplinary effects, each quantified by
a particular term in the parentheses.

SYSTEM SENSITIVITY AND OPTIMIZATION: OBJECTIVE

BR (IR _CD BR BR C_Co

Aircraft R0' 0AW' (3_ ' (_AR= _C. ° c_AR(system) C_CD' _ u

__ Approxi mate: /AW0min c_AWmin .
AW . = AW0. + _./

mln i mln --_----" APKI
L_AWmin
-- (_R / _R

R=Ro + OR .(_(AW) AWmin + _- AAR

(I)

(2)

(3)

_R F _R a (AWmin)

R = R0 + a(_W) AWOmin+ L O(--_-W)" _ +

OR c_(AWmin) 8C (3R 0CD

+ _(AWmin) 5Cp ._- + _--_D• --_--_ .AAR {4)

Fig. 9
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A similar development is shown in figure 10 for the system level constraint
on TOGWleading to a linear approximation in of the constraint as a function
of geometry in eq. 4. Again, the terms in eq.4 quantify the several,
interdisciplinary influences involved.

5T clT _Wf 8CD

( ' ,TOGW, T _< TO; c](AW)' (:3 Wf ' 0C D _A_ (1)

Appr oxi mate:

0T
T = TO + 0(AW) • AWmin

[___
- AWOmin +

_T • AW 0
rain

T=T +

0 (:] (AWmi n ) 0T .+ 0 (AWmin)

OC D
•- • AA_ (2)

•A/_ ,,<TO

clAW
min

• Am
aAR

_mFrom optimum sensitivity analysis

i_ _ + i_Cp •_ +

(3)

(4)

Fig. i0
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Derivation of R and T as approximate functions of geometry (bottom line
equations in fig. 9 and 10) enables the configuration group to modify the
geometry (AR) toward better performance (R). Whenmodifying AR, the group
is assured that the flutter constraint will be kept satisfied to the first
order of accuracy, because the flutter weight penalty will follow the change
of ARin a way prescribed by eq. 2, figure 9. The changeof ARmay be
obtained formally by solving an optimization problem defined by eqs.1 and 2,
figure 11. The resulting performance improvementover the previous Case of
the frozen ARis shownby the last term in eq.4. The improvement comesabout
because we traded structural weight and aerodynamic drag for each other
while modifying the geometry (a typical design trade-off), and we did it in
a measuredway on the basis of the sensitivity derivatives.

SYSTEM SENSITIVITY AND OPTIMIZATION
Conclusion

Find A/_. such that

_R W 0 _R
R : R0+ _(Z_W) " A rain + _" A/_--. max (1)

Subject to

5T . 0m aT. A/_ ..< TO (2)
T=T O + a(AWmin) AW in + 5/_

Obtain (A/_)op t from 1 and 2, to get Rmax:

8R 0 _R
Rmax= R0+ _(AW)" AWmin + _/_ " A/_

_R
Rmax= RO- AR + _#R " AA_

Obtained Additional

previously term

(3)

{4)

Fig. ii
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The sensitivity of R to geometry represented by the derivative in the last
term on the preceding figure is the key piece of information necessary to
reduce the system performance penalty paid for the fix of the subsystem
problem (flutter). The expression for the derivative is reproduced in figure
12 (see eq. 4, figure 9), with the source of each partial identified by a
letter code inscribed beneath.

DISCUSSION OF THE OPTIMAL SOLUTION

_R c_R
_/_ _ (Z_W)

P

Total chain-derivative expression for c_R/c_/_ is:

c_(AW . _ c_( AWmin )m_nl 6R

S P ASF

i_Cp _R /_CD

"

A P A

U ST

• Existence of the additional term in equation for Rmax allows
to recover a part of the performance penalty --

• Sources of derivatives: P - performance, S - structures,
ASF - aeroelasticity and flutter,
A - aerodynamics, ST - steady,
U- unsteady

Fig. 12

88



Before we take a closer look at availablity of the derivatives at the
appropriate sources, let us devote one figure (fig. 13) to adress the
obvious question that arises at this point: "Whynot to get whatever
derivatives are needed by a straightforward finite difference technique ?".
To supplement the figure, let us assure the reader that we do not
dogmatically favor the quasi-analytical way over the finite difference way
of computing the derivatives. If someoneovercomes the computational cost
impediment in a finite difference technique built on top of a CFDanalysis -
the resulting tool will certainly be eagerly accepted. However, the point
is that a quasi-analytical alternative to finite difference techniques
exists, and due to experience garnered in other disciplines it deserves a
serious consideration. Wewill comeback to this point again, soon after we
examine, briefly, the derivative availability under the state of the art.

SENSITIVITY DERIVATIVES BY FINITE DIFFERENCE?

• For N variables, the simplest finite difference technique
requires, at least, N + 1 repetitions of analysis

• In real world of engineering design, that erects a time n
and cost barrier

• Experience from other engineering disciplines suggests
an alternative: quasi-analytical algorithms

• Only one paper in this symposium program refers to
aerodynamic sensitivity analysis -- that fact is symptomatic
for the state of the art in CFI)

Fig. 13
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Although it is quite clear where each derivative should originate, the
availability is distributed very unevenly, as shown in figure 14. Most of
the pertinent capability exists in structures for derivatives with respect
to cross-sectional dimensions and overall shape (see survey in ref. 3). Some
of that capability becameavailable in production level codes. In
aeroelasticity, algorithms exist for computation of the flutter velocity
derivatives with respect to the cross-sectional dimensions (ref. 4), but not
with respect to the overall shape variables. Unfortunately, to the best of
available information, sensitivity analysis in CFDis currently limited to
the capability described in ref. 5 that applies only to linear subsonic
aerodynamics.

AVAILABILITY OF DERIVATIVES

• Performance:

• Structures:

• Aeroelasticity
and flutter:

Finite difference is inexpensive

Analytical derivatives available in production codes
(e. g., NASTRAN)

Analytical derivatives of VF available

• Aerodynamics: A beginning made in steady, subsonic, NASA CR 3713,
1983 ( Bristow, MCDAC)

Nothing in transonic l

Nothing in supersonic I Steady

Nothing in unsteady

Nothing in production level codes

Fig. 14
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Let us contrast, in figure 15, the finite difference technique with a quasi-
analytical manner of computing the derivatives. Both techniques apply to a
set of equations that, in general, govern a physical problem (this is a
generic discussion, not limited to aerodynamics). The set of equations
appears as the topmost equation on the figure, with y denoting the vector of
solution variables (behavior variables), and x standing for a vector of
design variables that are constant in the process of solving the equations
F, but mayvary in the associated design (optimization) problem.

The computational cost of the finite difference approach (line I) wasnoted
before. That cost may be avoided by meansof a quasi-analytical approach
described by line 2. It begins with setting to zero the first variation of F
with respect to perturbation of an element of the vector x, and leads to a
universal sensitivity equation (eq. 2). That equation can be directly
solved to obtain the vector of derivatives which, in effect, relate change
of the output (y) of the solution of the governing equations (F(y,x) = O) to
the input (x). Three commentson the nature of the sensitivity equation
(eq.2) are noted at the bottom of the figure. Appendix A provides a self-
contained elaboration on the generic quasi-analytical approach, and Appendix
B illustrates that approach in linear static structural analysis.

ANALYTICAL DERIVATIVES VERSUS FINITE DIFFERENCES

F(y,x) = 0, --, y; y = y(x) implicitly

e.g., y : Cp (location), x : /_, F( ) - an algorithm

1. Finite difference: x--,x+Ax--, F(y,x)-+y+Ay; 0y = Ay
0x Ax

(1)

N + 1 times for N x's

2. Analytical: _-_ (Fly,x)) = 0--,
OF 0y 0F

0--y" 0x - 0x (2)

• Eq. 2 is linear with respect to _y/0x, even though F(y,x) may be
nonlinear

• Eq. 2 is noniterative, even if F(y,x) = 0 is iterative

• In eq. 2, 0F/0y and 0F/Sx obtainable either analytically or by finite
difference, then F(y,x)is evaluated, rather than solved F(y,x)= 0

Fig. 15

!

91



The conclusion we are now arriving at is that demonstratable improvements in
aircraft performance are achievable by including interdisciplinary
interactions in the configuration shaping decisions. Muchof the potential
for these improvementsremains either unused, or its exploitation is being
achieved at an excessive computational cost because of the lack of
sensitivity analysis capability in CFD. The postulated remedy is
development of a capability for computation of derivatives with respect to
shape as a routinely available option in the CFDcodes. Hence, the
challenge to the CFDcommunity posed in figure 16 closes this paper.

A CHALLENGE FOR COMPUTATIONAL

AERODYNAMICS COMMUNITY

• Derivatives of: Cp(x,y), CD, CL, CM

• With respect to: Configuration variables,

e. g., Aspect ratio

Sweep angle

Taper

Airfoilshape

Camber...

Twist,etc....

• For sub-, tran-, supersonic,steady,unsteadywing +
fullconfiguration

• Basic formulation + production codes

Fig. 16
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APPENDIXA

GENERALEQUATIONFORSENSITIVITY

This Appendix is a self-contained tutorial on sensitivity analysis arising
in a generic problem whose governing equations are given. Let

F(y,x) = 0 (I)

represent governing equations of a problem in which y is a vector of
unknownsto be obtained by solving eq. I, and x is a vector of given
constants. The quantities y and x maybe vectors, and F may be a vector of
functions. If y is a vector, eq. I implies a set of equations whosenumber
is equal to the length of vector y; however, the x vector may be shorter
than y. Existence of the solution of eq. I makes, implicitly, y = f(x). The
functions F maybe anything computable : linear algebraical equations, PD
equations, integral equations, or integral-differential equations,
transcendental functions, etc. It maybe nonlinear, and mayrequire an
iterative methodfor solution of eq. I.

If eq. I governs a physical system being designed, then the designer wants
to know not only the y for a given x, but also the sensitivity of b to those
x-quantities that he controls as design variables. For instance, F(y,x)
might be the Euler equations from which to compute y - the pressure
distribution on a body in airflow, and x might be the body geometry
variables. The designer of the body shape needs to know _y/_x.

Oneway to obtain _y/_x is by finite differences. This requires solving eq.
I for given x to obtain y. Then assume, for one element of x,a perturbation
x x + Ax, and repeat solution of eq. I to get y + Ay. Approximation to
_y/_x is

_y/_x = Ay/Ax; (2)

This operation must be repeated for all x-quantities of interest and may be
prohibitively computer-intenslve, if eq. I is expensive to solve. In
addition, the accuracy of _y/_x will depend on the proper choice of Ax.

An alternative is a quasi-analytical approach. It is called "quasi-" because
the y(x) is knownonly numerically. However, we know that for Ax, we must
have

F(y+Ay, x+Ax) = O; (3)

in other words, increase of x must be compensatedfor by change in y to
preserve the zero value of F. Hence, recognizing that the total derivative
(TD) of F with respect to x is according to the textbook rules of
differentiation for implicit functions

dF/dx-- _F/_x + _F/_y _y/_x; (4)

eq. 3 will be satisfied if

dF/dx Ax = 0 (5)
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Substituting eq. 4 into 5, and rearranging, yield

_F/_y _y/_x =- _F/_x (6)

Eq. 6 is a general sensitivity equation in which the desired sensitivity
appears directly as the unknown _y/_x. For vector y of length n, the term
_F/3y is a matrix n * n whoseeach column is a vector of gradients with
respect to y (a Jacobian matrix), the term _y/_x is a vector of unknown
derivatives of y with respect to one particular x variable, and the term
_F/_x is a vector of derivatives with respect to the sameparticular
variable x. Computation of the derivatives of y with respect to several
variables x requires solutions of eq. 6 with manyright hand sides - one per
each variable x. Since the Jacobian matrix remains the samefor all
variables x, a solution algorithm arranged so as to factor the matrix only
once will be preferred for computational economy.

It is important that eq. 6 is simply a set of linear, algebraical equations
even though eq.1 maybe far more complicated than that. The terms _F/_y and
_F/_x maystill not be obtainable analytically. If so, they can be computed
by finite difference, i.e., assuming perturbation x=x+Ax and y=y+Ay for each
element of x and each element of y separately, and substituting into eq. I,
one obtains the respective AFvalues (upon substitution of x+Ax, or y+Ay, F
in eq. I is no longer equal zero, it becomesAF) from which the terms _F/_y
and _F/_x can be computedas in eq. 2.

Computation of the terms _F/_y and _F/_x by finite difference is
accomplished by repetitve evaluations of F(y,x) for knowny and x, as
opposed to repetitive solutions of F(y,x) = 0 (eq.1) for unknowny required
by eq.2. Hence, the quasi-analytical approach is inherently less computer
intensive than the finite difference procedure based on eq. 2.
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APPENDIX B

Application of the generic, quasi-analytical algorithm for sensitivity

derivatives is illustrated with one example from linear, static, structural

analysis. The governing equations - the counterpart of F(y,x) = 0 - are the

load-deflection equations involving a stiffness matrix K, unknown

displacements y, and the cross-sectional dimensions x as design

variables. The structural sensitivity equation recursively connects to the

load-deflection equations through the solution vector y. Since the matrix

K has to be factored (decomposed) in the process of solving for y,

significant computational economy may be realized by saving the factored

matrix and reusing it in the solution of the sensitivity equation.

ANALYTICAL DERIVATIVES

IN LINEAR STATIC STRUCTURAL ANALYSIS

Generic

F(y,x) : O; y = y(x)

 _Lf. : _
c_y c_x _x

Structural

K(x). y = P(x); y= y(x)

_x _K _PK- = - _---_-• y + _--_-

y -- displacement

x -- cross-section dimension

c_K a P Analytically or
c_x ' ax by finite differences
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SENSITIVITY OF OVERALL VEHICLE STIFFNESS

TO LOCAL JOINT STIFFNESS

N8÷-1886 

Choon T. Chon

Vehicle Methods and Components Department

Engineering and Manufacturing Staff

Ford Motor Company

Dearborn, Michigan

SUMMARY

The present paper discusses how overall vehicle stiffness is affected by

local joint stiffness. By using the principle of virtual work and the minimum

strain energy theorem, a closed form expression for the sensitivity coefficient

has been derived. The insensitivity of the vehicle stiffness to a particular

joint, when its stiffness exceeds a certain value (or threshold value), has been

proved mathematically. In order to investigate the sensitivity of the structure

to the joint stiffness, a so-called "stick" model has been created, and the

modeling technique is briefly described. Some data on joint stiffness of tested
vehicles are also presented.

INTRODUCTION

Over the years, the study of the joint behavior of vehicle structures has been

identified as one of the most important subjects in the automotive industry. It

is widely known that the flexibility of structural joints can affect not only the

NVH (Noise, Vibration and Harshness) characteristics of the vehicle, but also

other vital structural performance characteristics under various loading condi-

tions (e.g. crash loads, road loads, jacking load, towing load, etc.).

The first study which accounted for the effect of flexible joints on

automotive structural responses was by Chang [i] who used a two-dimensional frame

model for a static analysis. He found that the structural response is far more

sensitive to reducing joint stiffnesses (relative to the baseline values) than to

increasing them. Recently a similar phenomenon was reported by Du and Chon [2],

and it was claimed that there might exist a threshold stiffness value in a given

joint of a vehicle structure. In other words, if a joint stiffness exceeds the
threshold value, then the overall stiffness of the structure becomes insensitive

to the particular joint.
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The objective of the present paper is to demonstrate this phenomenon
theoretically by showing that the derivative of the total strain energy with
respect to a particular joint stiffness decreases and becomeszero as the joint
stiffness approaches infinity. It should be noted that under the sameloading and
boundary conditions, the structure which contains higher strain energy is less
stiff than the structure with lower strain energy. In this paper, a closed form
expression for the sensitivity coefficient has been derived, using the principle of
minimumstrain energy and the principle of virtual work. In order to investigate
the sensitivity of the structure to joint stiffness, a so-called "stick" model has
been created, and the modeling technique is described. The last section discusses
joint behavior, in general, by comparing the analytical results with test data.
Discussion of other component behavior is also given based on the sensitivity
coefficients derived in the paper.

SYMBOLS

Pi

Qj

ui

qj

S

Sp

Su

Djk

U

QjW

Qr

Nr

bm

Nb

n_

Vm

generalized force vector

generalized stress vector

generalized displacement vector

generalized strain vector

surface of the structure

surface where the force vector, Pi' is prescribed

surface where the displacement vector, ui, is prescribed

compliance matrix

total strain energy

free component of Qj

reactant component of Qj

total number of redundancies

m-th parameter

total number of parameters

vector normal to the boundary surface S as shown in Fig. I

volume in which Djk depends on b m.
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U m

Jm

Us

Usm

N

_p

strain energy stored in the volume Vm due to the external loads Pi

m-th joint stiffness

total strain energy stored in a "stick" model under prescribed loading

conditions

strain energy stored in the m-th joint under given external loads

number of joints

joint stiffness multiplication factor

BASIC CONCEPTS

This section summarizes the basic concepts of the general sensitivity study

reported in Refs. [3.5]. They will then be applied to joint behavior in the later
section.

(i) THEORETICAL BACKGROUND - Linearity of the equilibrium and strain-displacement

relations will permit the principle of virtual work to be written as:

Qj qj* dV = _Pi ui* dS
(1)

where Pi and Qj are any statically admissible fields, and u i
kinematically admlssible fields. In the current paper, the

assumed to be negligible. Note that S = Sp + Su (Fig. i).

and q= are any

body _orces are

Let the solution of a structural problem for an elastic material be given by

u-,l Q',j and q-j. These quantities constitute, by definition, both a statically

admissible field and a kinematically admissible field. In addition, qj and Qk
satisfy Hooke's law:

qj = Djk Qk (2)

Note that if the deformations are small, the total strain energy stored in

the loaded system will be equal to the work done by the applied forces. Thus the
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total strain energy U maybe expressed in terms of generalized stresses as:

U = 1/2 fV Djk Qj Qk dV
(3)

Since a structure is, in general, statically indeterminate, one may divide the
generalized stress Qj(x_) at any point x_ into two parts:

Nr
Qj (xl) = QjW (x_) + y. Ajr(x_) Qr

r=l

(4)

where _jr (x_) (r = I ..... Nr) are linear functions of x% _ Then substituting Eq.

(2) int5 Eq. (I) and using the principle of virtual work (Eqs. (1)and (4)), one can

prove that

V Dj k ljr Qk dV = 0
(5)

Eq. (5) implies that the quantity U is minimized with respect to the values of

each of the redundancies; Eq. (5) thus yields exactly N r equations from which

the values of the redundancies may be found.

(ii) SENSITIVITY ANALYSIS The objective, then, is to derive a closed form

expression for the sensitivity coefficient aU/ab m. Differentiating the total

strain energy, U, which is defined in Eq. (3), with respect to the m-th

variable bm, leads to the following expression:

aU _ 8x_ _V ODjk- 1/2 Djk Qj Qk n_ dS + 1/2 Qj Qk dV
ab m ab m Ob m

_V aQj dV+ Djk ab m
Qk (6)

Here Eq. (6) may be considered as material derivative of volume integral [6].

Eq. (6) can be greatly simplified, if one chooses certain types of

parameters. For example, an appropriate choice of cross-sectional properties

(e.g., material property, area, moment of inertia, etc.) of either beam or
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plate/shell structures, makes the first term of Eq. (6) identical to zero. And
since the free components QjW in Eq. (4) are the solutions of the statically
determinate structures, the_ are independent of cross-sectional properties, which
results in:

aQj Nr OQr
= _ _jr

abm r=l Obm

(7)

Then using the minimum strain energy principle (Eq. (5)) and Eq. (7), it can be

shown that the last term of Eq. (6) also vanishes. Finally one can rewrite Eq. (6)

as:

aU / aDjk1/2 -- Qj Qk dV

Obm Vm abm

(8)

It should be noted that the integration in Eq. (8) need only be performed over the

region V m in which Djk depends on bm.

In addition,

proportional to bm

further simplified:

if one can express the compliance tensor Djk as inversely

(i.e., Djk = i/b m ) in the region Vm, then Eq. (8) can be

v)= 1/2 Djk Qj Qk d

Ob m b m b m
m

(9)

VEHICLE STRUCTURAL MODEL

Before proceeding further, it is necessary to describe a vehicle structural

model for the purpose of studying the sensitivity of local joint stiffness to the
overall structural stiffness.

"STICK" MODEL - A "stick" model has been created according to the concept

described in [2] (Fig. 2). This modeling conc.ept is based on the assumption that

beams/frames are the primary load carrying members in a structure.

The model consists of 188 grid points and 259 beam elements. Beams are

modeled with proper offset vectors, which are often very useful when modeling

beams containing eccentricity [7]. Even though there are no shell elements, per
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se, several equivalent beam elements are introduced to simulate the sheet metal
structures (e.g., floor panel, dashboard, wheel housing, rear quarter panel,
etc.). By equivalent beamelements we meanthat sectional properties are computed
as if panels were beams. The Ford ComputerGraphics System is used to create the
model. The software for the Ford Graphics System is called PDGS(Product Design
Graphics System) which is a general purpose three-dimensional design and drafting
system. FAST (Finite element Analysis SysTem),which is embeddedin PDGS,can be
accessed from the main menuof the PDGSand allows the user to build and modify a
finite element model.

TESTS Bending and torsional tests were performed on the body structure in
accordance with the CompanyTest Procedure. The structure was supported at the
center of front and rear wheels. In order to apply the bending load across each
seat position (so-called H-point), a heavy beamwas laid on three points (on both
left and right rocker panels and the middle tunnel) with spacers underneath so
that the beamcan be levelled with respect to the ground. The beamweighs 4,448.2
N (i,000 lb.). For the torsional test, the applied torque was 3.39 x 106 N-mm
(2,500 ft-lb.) at both centers of the front wheels, while the rear wheel axle was
supported.

ANALYSES- Elastic analyses under bending and torsional loads were performed using
the "stick" model described above with the following boundary conditions and
material properties.

Loading (L.C.) and Boundary (B.C.) Conditions :

(a) Static Bending Analysis

L.C. : Unit downward(-z direction) displacements are prescribed
at both the right and left rocker panels, and the middle
tunnel. This simulates the dead weight applied in the test
setup and these points coincide with the H-point of the
"stick" model. Since displacements are prescribed instead
of forces as the loading condition, reaction forces at the
loading points are computed, and the deflections are
proportionally adjusted so that the sumof the reaction
forces equals 4448.2 N (I000 Ibs.).

B.C. : Simply supported at both the front and rear wheel centerlines
with one end allowed to move freely in the x-direction.

(b) Static Torsional Analysis

L.C. : Twovertical loads, 4945.0 N (1111.7 Ibs.) each, in opposite
directions, which are equivalent to 3.39 x 106 N-mm(2500 ft-lb
torque) were applied at the centerline of the front wheel axle.

B.C. : Simply supported at the centerline of the rear wheel axle.
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Material and Cross-Sectional Properties:

Young's modulus (E) and Poisson's ratio (v) used in the model are:

E = 2.07 x 105 N/_ 2 (30.0 x 106 psi)

v=0.3

ACCURACY OF THE MODEL - In this subsection, the analytical results were compared

to the test data to investigate the accuracy of the model.

The overall deformed shapes obtained from the analyses and the tests for both

bending and torsion are compared in Figs. 3a and 3b. The dotted and solid lines

represent the test data and the analysis results, respectively. The abscissa

denotes the x-coordinate of the body structure from the front to the rear wheel

axles and thus represents the length of the wheel base. The ordinates denote

normalized deflections for the bending analysis and twist angles for the torsional

analysis. Note that these values were measured along the bottom rails of the

structure in the actual test.

Even though the overall deformed shape from the analysis is in good agreement

with that of the test, the analytical and test curves show a slight discrepancy in

the rear of the vehicle. This may have resulted from the slight difference in the

boundary conditions between the analysis and the test setup. The torsional curve

from the analysis gives a good agreement with the test data. It should be noted
that the curve obtained from the test data has more local fluctuation in

magnitude. Studying the reasons of it is beyond the scope of this report.

A rationale which justifies the concept of a "stick" model approximation for

predicting the overall stiffness of a vehicle structure is established in a

separate paper*. In this paper, it is shown that the upper bounds as well as the

lower bounds of total strain energy are the same for both the vehicle structure

and the corresponding "stick" model.

SENSITIVITY STUDY OF JOINTS

Thus far, the basic concept of derivation of the sensitivity coefficients and

the concept of the "stick" model approximation have been presented. This section

Chon, C. T.:

progress.

"Rationalization of "Stick" Model Approximation," work in
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describes the application of the above results to the sensitivity study of joints

which affects the overall vehicle stiffness. As mentioned above, it has been

analytically and experimentally demonstrated in [i & 2] that the joint behavior is

one of the most important factors for the overall stiffness of the body

structure. For the sake of clarity, this section is divided into two subsections:

the cases of a single joint and multiple joints.

A SINGLE JOINT - In the model analyzed, the joint which connects the rocker panel

and the bottom of the B-pillar (see Fig. 4) was identified as the joint to which

the total strain energy was most sensitive. This was done by comparing the

amount of strain energy stored in the joints. After introducing a joint

magnification factor which was used in [2] (see Fig. 4 for the joint locations), a

parametric study of the joint behavior was performed. Fig. 5 shows how the total

strain energy of the structure is affected by the joint stiffness of the B-pillar

and the rocker panels. Note that the total strain energy becomes insensitive as

the joint stiffness becomes large. This phenomenon can be explained using the

sensitivity coefficient derived in the previous section (see Eq. (9)) as follows:

Let bm = Jm and let Us be the total strain energy stored in the model under

the prescribed loading conditions (either bending or torsion). Then Eq. (8)
can be rewritten as:

OUs _V 0Djk
1/2 Qj qk dV

aJ m aJm
m

(i0)

Note that integration in Eq. (i0) needs only be performed over the volume in which

the m-th joint is contained. Moreover, since the compliance tensor Djk is
inversely proportional to the m-th joint stiffness, Jm, the final form of Eq. (i0)
is:

aUs Us m

aJm Jm

(ii)

It is very important to note from Eq. (ii) that the sensitivity coefficient

@Us/aJ m goes to zero as the m-th joint stiffness, Jm, approaches infinity.
Mathematically one can write this as:

OUs / Usm )
L i m - L i m -- = 0 (12)

Jm _ 0o aJ m Jm -_ =o Jm
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Eq. (12) proves the phenomenonshown in Fig. 5 for a large value of Jm (see region
"C"). In addition, it should be noted that the total strain energy also becomes
insensitive to Jm as the magnification factor approaches to zero (see region "A"
in Fig. 5). This will be discussed in the next section.

MULTIPLEJOINTS Eq. (12) can be generalized
strain energy with respect to more than one
joints which are of interest, the associated
defined as:

to compute a derivative of the
joint stiffness. Given a group of
joint stiffness multiplier, _p, is

(Jp ......... Jp+N) = _p ( _p ......... _p+N) (13)

The number of joints, N,
can be modified as:

in one group can be completely arbitrary. Then Eq. (I0)

= Z 1/2 Qj Qk dV (14)

Again since Djk = i/_p, Eq. (14) becomes

@Us i N

a_p _p _=p < I/2_V _ Djk Qj Qk dV1 = -

i N

-- 7, U_ (15)

_p _ =P

Note that the individual strain energy has to be summed in this case. Therefore

one can conclude that the following expression is also true:

aU s
Lim

_p _ _ a_p

= 0 (16)

Eq. (15) implies that the strain energy Us is a hyperbolic function of the

multiplication factor of the joint stiffnesses. Fig. 6 shows the total strain

energy variation as functions of the multiplication factor, _p. Again, the total
strain energy becomes far less sensitive if _ exceeds a certain value. This is

the proof of the findings reported inRefs. [l]Fand [2].
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DISCUSSION AND CONCLUSIONS

EFFECTS OF A SINGLE JOINT - When a single joint is varied, the overall vehicle

stiffness becomes sensitive to the local joint stiffness only within a certain

stiffness range (region "B", Fig. 5). In other words, the structure looses

sensitivity not only when the magnification factor is small (region "A"), but

also when the magnification factor is large (region "C"). The latter case has

been proven in the previous section. For an explanation of the former case, one

may consider the concept of a "failure mechanism" which has been used extensively

in the literature on Limit Analysis [8]. Since the structure can sustain the

given load with one or more "yield hinges", as long as the structure does not form

a "mechanism", the structure can be said to have a finite stiffness, which is

shown in the region "A" of Fig. 5. This means that, even if one removes the

particular joint, the structure will still sustain a load within given limits.

EFFECTS OF MULTIPLE JOINTS In the case of multiple joints, flexible joints have

been introduced by adding 24 rotational spring elements at 12 structural joints in

the model. The joints added in this fashion are shown in Fig. 4. A joint

stiffness magnification factor (see _p in Eq. (13)) was introduced and a
parametric study of the joint behavior was performed. Fig. 6 shows a diagram of

the total strain energy of the "stick" model versus the joint stiffness magnifica-

tion factor for both bending and torsional loading cases. Published values for

the joint stiffness obtained from three vehicle tests [ 9] (see Table I) were used

in the analyses. Table 2 as well as Fig. 6 compares the strain energy of the

"stick" model (which has rigid joints) with strain energy computed using those

three sets of joint stiffness. It is interesting to note that the strain energy

values using the three sets of joint stiffness are all within a range of 39 and

that those values, compared with the values of the "stick" model which has rigid

joints, differ by a maximum of liP. This means that the actual values of joint

stiffness may be equal to or slightly smaller than the corresponding threshold

values. Unlike in the case of a single joint, the total strain energy becomes

infinitely large as the multiplication factor approaches to zero; this indicates

that the joints shown in Fig. 4 may form a "failure mechanism".

"STICK" MODEL - These findings of the joints support the following hypothesis: A

structure consisting of thin panels surrounded by frames, as is typical of

automotive structures, may not be stiffened substantially by the panels under

usual loading conditions, for the panels will buckle or deform like thin

membranes, offering no support at the interior points. Even under these

conditions, however, the part of the panel near the edge remains relatively

undeformed, and acts as a gusset which stiffens the joint. This, then, implies

the following modeling technique for the "stick" model of a vehicle structure: (i)

The joints can be treated as rigid in the model, reflecting the fact that the

panels act as gussets; this allows the joint stiffness to exceed the threshold

value, and (ii) Since the panels contribute negligibly to the stiffness of the

structure away from the joints, they do not have to be explicitly included in the
model.
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EFFECTS OF OTHER COMPONENTS -This idea, which has been applied to the joints, can

be extended to other components. Similar phenomena can be seen by varying

stiffness values of other components instead of varying those of just the joints.

Figs. 7a and 7b show how the overall bending stiffness (solid lines) and

torsional stiffness (dotted lines) change with the stiffness of the rocker panels

or the tunnel. Figs. 7a and 7b were generated by varying the stiffness (abscissa)

of the rocker panels and the tunnel, respectively. The ordinates represent the

maximum deflections for bending and the twist angles for torsion, respectively. It

is obvious from both Figs. 7a & 7b that the overall vehicle stiffness is much more

sensitive to the rocker panel than to the tunnel under bending as well as

torsional loadings. One can, however, see that the curves of both figures become

flat as the stiffness of these two components increases. This phenomenon can also

be shown using the equations derived in the previous section by replacing the

variable bm with the stiffness of either the rocker panels or the tunnel.
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TABLEI.- MEASUREDJOINT STIFFNESSVALUES.*

JOINTS
STIFFNESS(xl07 N-mm/rad)

Vehicle A Vehicle B Vehicle C

I
2
3
4
5
6

2.12/1.61 3.96/3.48 5.12/3.38
3.55/2.46 2.45/3.69 3.48/2.84
14.4/3.92 28.7/15.6 18.0/5.14
20.1/3.26 39.3/4.51 27.4/4.12
2.35/0.18 2.75/0.12 7.41/0.20
10.1/0.54 22.6/1.25 16.9/1.29

(Fore-Aft/In-Outboard)

*(See Fig. 4 for corresponding joint numbers.)

TABLE2.- COMPARISONOFSTRAINENERGIESOF "STICK" MODELANDSTRAINENERGY
COMPUTEDUSINGJOINTSTIFFNESSLISTEDIN TABLEI.

STRAINENERGY BENDING TORSION

U ("STICK" MODEL) 7.04xi03 (i.00) 2.88xi04 (I.00)

U (Vehicle A)
U (Vehicle B)
U (Vehicle C)

N-mm

7.79xi03 (i.ii)
7o69Xi03 (1.09)
7.57xi03 (1.08)

3.17xi04 (i. I0)
3.07xi04 (1.07)
3.11x104 (1.08)
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Figure 1 - A general body surface S consists of two parts, Sp and Su. Over Sp,
forces are prescribed and over Su, displacements are prescribed. The
term n is the unit vector normal to the surface.

Figure 2 - A typical "STICK" model with cross-sectional shapes of beam elements.
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ABSTRACT

This paper describes a unified theory of design sensitivity analysis of linear

and nonlinear structures for shape, nonshape and material selection problems. The

concepts of reference volume and adjoint structure are used to develop the unified

viewpoint. A general formula for design sensitivity analysis is derived. Simple

analytical linear and nonlinear examples are used to interpret various terms of the

formula and demonstrate its use.

I. INTRODUCTION

Design sensitivity analysis gives trend information that can be used in the

conventional or optimal design process. The subject, therefore, has received

considerable attention in recent years. For a thorough review of the subject Refs.

I and 2 should be consulted.

The present paper describes a unified variational theory of design sensitivity

analysis of linear and nonlinear structures (geometric as well as physical non-

linearities) including shape, nonshape and material selection problems. The adjoint

variable approach is utilized although the direct differentiation method can be also

easily developed. In Section 2, equations of continuum mechanics for nonlinear

analysis are summarized. They are needed in design sensitivity analysis. A unified

viewpoint for shape and nonshape design sensitivity analysis is described in Section

3. The concept of a reference volume is explained in Section 4. The variational

theory of design sensitivity analysis using adjoint variable approach is developed

in Section 5. The theory is used to solve several simple analytical problems in

Section 6. Finally concluding remarks are given in Section 7.

2. NONLINEAR ANALYSIS

Nonlinearities in structural systems can be due to large displacements, large

strains, material behavior and boundary conditions. Consistent theories to treat

these nonlinearities have been developed 3,4 We will use the developments and

notations of Ref. 4, and follow the Total Lagrangian (or Lagrangian) formulation,

although updated Lagrangian formulation can also be used. One of the major diffi-

culties in describing nonlinear analysis is the complexity of notation. We will

mostly use standard symbols from the literature for various quantities. Matrix and

113



tensor notations will be used. One major departure from linear analysis is that

quantities must be measured in a deformed configuration. Also, a reference con-

figuration for the quantities must be defined. We will use a left superscript to

indicate the configuration in which the quantity occurs and a left subscript to

indicate the reference configuration.

A starting point for theory of nonl{near analysis is the principle of virtual

work for the body in the deformed configuration at time t (load level t):

fO V f0 V t 6 tu OdF T 0
t t t .6tu 0dV - fO 0T" --
0S.60 E 0dV - O f FT

(I)

where left subscript 0 refers to the undeformed configuration, a ' ' refers to the

standard tensor product and

0V = undeformed volume of the body

t Second Piola-Kirchhoff stress tensor
0S =

t

0 e -- Green-Lagrange strain tensor

t

Of = body force per unit volume

tu = displacement field

tT -- surface traction specified on part of the surface FT
0

OF = surface of the body

-- variation in the state fields

Let u0 be the specified displacement on the part Fu of the surface. The variations

of the state fields in Eq. (I) are arbitrary but kinematically admissible. They can

be replaced by any kinematically admissible fields. In particular they will be

replaced by adjoint structure state fields in later derivations. The virtual work

equation can also be written using Cauchy stress tensor and other quantities

referred to the deformed configuration. Transformation can be used to recover

Cauchy stresses from second Piola-Kirchhoff stresses and vice versa. However, in all

the derivations given in this paper we will use the undeformed configuration as the

reference configuration.

The Green-Lagrange strain tensor is given as

= Ir t T , t ]T]tOE v U +[0v U J + (oVtUT] (0Vtu T (2)

The nonlinear stress strain law, in general, can be written as

t t
0S = _%(0e,b) (3)

where b is a design variable. Note that for many applications, functional form

for _ is not known. In numerical implementations, the explicit form is not

needed. Only an incremental stress-strain relation is required.
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Equations (I) to (3) are nonlinear in the displacement field tu. There are
several methods for solving such system of equations. 5 The incremental/iterative
procedure based on Newtonmethods is the most commonlyused and effective procedure.
This will be summarized here. In the derivation of the procedure, it is assumed
that equilibrium is known at t and it is desired at t+At. The state fields are

4
decomposedas

t t+At_ t 0et+Atu -- u + u; 03 -- 0 S + 0S; 0S = ¢,e

t+At- t + of; t+At_ t + oTt+Ate _-te + 0E ' 0r -- 0f Or = 0T (4)

where u : increment in the displacement field

0S : increment in the Second Piola-Kirchhoff stress

0e : increment in the Green-Lagrange strain

Of = increment in the body force

0T -- increment in the surface traction

Variation of the strain field is given as

6t+At
Oe- - 60E (5)

The incremental strain field from Eq. (2) is given as

0e= 0e+ On
(6)

= Ir T _ _T_T - T
0e _[0 vu +_0 vu J +[oVU )(oVtJ)T+(oVtU T) (oVuT) T]

(7)

0n = I[(oVUT) (0vuT)T] (8)

Substituting Eqs. (4) - (6) in the virtual work principle, Eq. (I), written at t+At

and using the fact that state at t is in equilibrium, we obtain the following incre-

mental virtual work principle:

f(ts + 0S).60 e Odv - _of.6u Odv - 10T.6u 0dr T = 0
(9)

Equation (9) is still a nonlinear in incremental displacement field u.

linearized by assuming

6OE = 60e; 0S = ¢,E.0 e

It is

(IO)

and iteration is used within the load increment to satisfy the equilibrium exactly

at t+At. The finite element procedure has been used to implement the preceding

6
equations into a computer program ADINA.
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3. UNIFICATION OF DI_NSIONAL AND

SHAPE DKSION SENSITIVITY ANALYSIS

In the literature, shape and dimension design sensitivity analysis problems

have been treated independently. In the shape problem, domain of the problem is

allowed to vary whereas in the dimensional problem domain is fixed but cross-

sectional dimensions are allowed to vary. It will be seen here that when varia-

tional formulation is used and volume integrals are used, there is no distinction

between the two problems.

Consider the general functional requiring design sensitivity analysis:

= fOv fo F ^ h(tu,b_(ts,_e tu,b)Odv + [(t b)OdF + fu • )OdFT
(b)O ' u(b)O T' u FT(b )

(11)

It can be seen that when design b is changed, the volume of the body as well as its

surface change. As examples, consider optimal design of two simple bodies shown in

Fig. I. Are these shape or dimensional optimization problems? Our contention is

that although length of the members is not treated as a design variable in these

problems, volume of the body changes whenever any of the indicated design variables

is changed. We must account for variations of the domain of the body while wrLting

variations of the functional _ in Eq. (11). Thus the variational concept for design

sensitivity analysis is slightly different from the corresponding concept used in

purely analysis problems where domain of the body remains fixed (at least in linear

problems). This distinction is important in maintaining generality of the varia-

tional design sensitivity analysis theory where variation of the domain should be

always considered.

0 /////I ,//
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// -y

/

-A(×)
/

X
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DESIGN VARIABLES" W(x), d(x)

Figure 1. Examples of Optimal Design
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4. CONCEPT OF REFERENCE VOLUI_

The concept of a reference volume is extremely useful in problems where the

volume of the body is changing. The idea, introduced recently in Ref. 7, is to map

volume of the body in various configurations to a reference volume V. This is shown

in Fig. 2. The original volume of the body Ov(bO) moves to a volume tv(bO) under a

nonlinear motion. However, both the volumes can be mapped to the fixed reference

volume V under the mappings F1(bO) and F2(bO) respectively. The design process

changes shape of the body so that its volume becomes Ov(bl) at the new design b I.

This volume moves to tV(b I) under the nonlinear motion. Both these volumes can also

be mapped to the fixed reference volume V.

The concept of reference volume is also quite useful in design sensitivity

analysis. All the integrals of the problem are transformed to the reference volume

using the proper transformation of the independent variables. The mapping to the

fixed volume keeps changing under state or design variations. However, the refer-

ence volume never changes. Thus, when variations of various integrals are taken,

the variations of the reference volume need not be considered. In numerical imple-

mentations, this concept is also very useful. It allows us to discretize the design

problem into design elements that keep the same shape even when the real shape for

t£

0

°V(b°)

tV(b°)

F2

°V(b 1 )

£
F4

4/
tV(bl)

Figure 2. Concept of Reference Volume
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the structure changes during the optimization process.
independent variables, various expressions are given as

Virtual Work Equation at Load Level t:

Using the transformation of

Sts._E J dV- Stf.6tu J dV- StT.6t. J dFT = 0 (12)

Incremental Virtual Work Equation at Load Level t+At:

S(ts+oS).%_ J d_- Sof._,, j d[- SoT._,,J drT : o (13)

Green-Lagrange Strain Tensor:

0C = I[XT(rVtuT) + (rVtuT)Tx + _T(r vtJ) (rvtuT)TX] (14)

Incremental Strains:

0e = l[_T(rVg ) + (rVJ)T_ + _T(rVuT) (rVtT)T_

+ _T(rVJ) (rVtuT)T_] (15)

On -- I[XT(rVuT ) (rVuT)Tx] (16)

Functional for Sensitivity Analysis:

= S t t t ,b) J dF + S h(tU,b) J dF TG(0S,0¢,tu,b) J dV * S g(o T u (17)

Jacobian of Transformation:

X-- 3(Ox'0y'0z) ; J Ixl; _ x-1 I_T= = ; J = J n[ (18)
8(rx ,r ry, z)

In the_above equations superscript or subscript r refers to the reference coordi-

nates, J is the area metric, and n is the unit surface normal. Note that all

quantities in the above integrals are functions of the reference coordinates. Also

for oriented bodies such as bars and beams, J and IXI may be different from each

other if we use volume integrals throughout the sensitivity analysis. This can be

observed in the examples discussed later in the paper.

5. ADJOINT STRUCTURE APPROACH FOR

(ENERAL DESIGN SENSITIVITY ANALYSIS

Discrete form of the adjoint variable method has been discussed by several

researchers. 1'8-13 Variational form of the approach based on material derivative
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concept is described in Ref. 13 where sensitivity with respect to shape variations

is also considered. Adjoint structure approach is described in Refs. 14-17. The

approach has been applied to some nonlinear and shape variation problems in Refs.

18-20. Recently, Belegundu 21 has traced roots of the adjoint variable method to

methods of sensitivity analysis in optimal control literature. In addition, he has

shown that sensitivity analysis methods for static, dynamic, shape and distributed

parameter problems can be viewed as the general Lagrange multiplier method. This

shows that the adjoint variable is also a Lagrange multiplier for the state

equations which gives a sensitivity interpretation for it. 22 This interpretation is

extremely useful and leads to some insights into the adjoint variable method. It

also has implications in practical applications and numerical implementations of the

method.

In the following derivation we combine the adjoint structure approach with the

fixed reference volume concept to develop a general theory of design sensitivity

analysis of linear or nonlinear structures. To avoid confusion, we use 6 and 6 to

indicate arbitrary variations of the state fields and variations with respect to

design variable, respectively. Also, the notation G,S will be used to indicate

partial derivative of G with respect to t0S" Note that design sensitivity analysis

is performed at the final state of the system denoted by left superscript t on

various variables. Thus the virtual work equation (12) holds for the deformed

conf igur at ion.

Now taking variation of the functional @ in Eq. (17) with respect to design, we

obtain

u

f g _Jdru ÷ y h 6Jdrr + f_hJ drT ÷ _ (19)

where 6_I represents implicit design variation of _ given as

-t -t .6tu) J dV_*I = f(c s._os + o, .6o_+ c,u

+ f g,T.6tT J dF u + f h,u.6tul J drT (20)

The basic idea of the adjoint structure approach is to replace the implicit design

variations of the state fields in Eq. (20) by explicit design variations and the

adjoint state fields. To accomplish this we write design variations of various

equations as follows:

Design Variations of the Constitutive Law (Eq. 3):

_0 S= ¢ E" _t + _ (21)
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Design Variations of Strains:

where

_e = I[_T(rV_tT ) + (rV_tT)T_

(22)

+ + VtuT) (rV6tuT)Tx]xT(rV_tT ) (rVtuT)Tx XT(r (23)

=t I[_:T (r60c = vtu T) + (rVtuT) T _X

+ vtuT)T _:]+ _Xr (rVtuT) (rvtuT )T_ _T (rVtuT) (r (24)

Here 6 represents implicit design variations of the

explicit design variations of the strain fields.

Design Variations of Equilibrium Equation (12):

di spl acem ent s and _ the

f 60s.ca J dV + f _S.6ca J dV + f t0s.Ea _j dV - f _t0f.ua J dV

_ f t a _T.u a t ao1".,, _J d_ - J" J drT - j" oT.,, _ d7T = o (25)

where arbitrary variations of the primary state fields in Eq. (12) have been

replaced by the corresponding fields for the adjoint structure denoted by the

superscript 'a'. The adjoint structure and the corresponding state fields are

defined later. _0 S from Eq. (21) into Eq. (25), use Eq. (22) andSubstitute for

collect terms:

f[ a (_< _)E) t = a-t a ca"0S.6¢ 60f.u _¢] J dVE *_lE* + + -- +

_f t a t Ea) _j dV f(_T.ua _ t a(of._ os. - + oT._ _) d_T : 0 (26)

Now, let us define the adjoint structure as follows:

Loads and Boundary Conditions:

Initial strain field

Initial stress field

Body force

Specified Traction

a0
Specified Displacements : u

ai

: E = G,S

S ai: = G
jE

: fa = G
,U

T ao: = h
on FT

= -g,T on Fu

(27)

120



Constitutive Law (Linear):

a aiSa T (E - c ) -

Virtual Work Equation:

I sa'stE J dV - f fa.stuJ dV - I Ta'stu _ drT = 0

Substitute Eq. (28) into Eq. (29):

f(Ea.,,E.Sto E - Eai.0,E.st0E - sai.6tE - fa.6tu) J dV

Sai Sa; -- the adjoint stress field.

-f Ta.stu J dFT = 0

Strain Field (Linear in ua):

(28)

(29)

(30)

T T T

Ea = l[_T(rvua ] + (rVU a )T_ + _Tirvua ) (rVtuT)T_

T

+ _T(rVtT) irVU a )T_] (31)

Substitute the adjoint equilibrium equation (30) into Eq. (26):

_[Ea._ =t t = a -t a ai ~t a -- , 60e + e .6_,e.60e + oS.6e 60f.u + e "¢ e"

sai -t fa.6tu] J dV I t a t Ea) 6J dV+ .60E + - (0f.u - 0S.

+ f(Ta._tu_ _t0T.ua ) _ d_T _ foT.t ua 8J drT = 0 (32)

Note that the variations of the state fields in Eq. (30) are arbitrary. So,

they have been replaced as 8t0E = 6toC and 8tu = 8tu.

Substitute the adjoint loads from Eq. (27) into Eq. (20):

8_I = f(Eai.60S + sai.st0E + fa.6tu] J dV

+ f _ ua0.80T-t _ d_ u + f Ta0.6tuj dl"T (33)

Substitute for 6t S from Eq. (21) into Eq. (33):
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ai sai -t fa
.6t0¢ + _ ._¢ * .60e * ._tu] J dV

t j d_u f Ta0._t u _ d_T+ f-ua0._oT + (34)

-t
Substitute for 60E from Eq. (22) into Eq. (34):

_I : f[(eai'o,e+ Sai) .60e~t+ (eai "_,e+ sai)'_toe + eai "_

+ fa._t ] j dV + f_uaO.¢0T-tj dru + f TaO._T j dFT (35)

Substitute Eq. (32) into Eq. (35) and use Eq. (28) to obtain

_I f[-t a ai) _ sa.=t _ t _e a] J dV= _Of.U - (ea-e .6¢ 60e 0s-

+ fiof.U a _ t ea)_j dV f(tT.ua 6J -t a0S. + + 60T.u J)dF T

-t aO- 60T.u u (36)

Substitute Eq. (36) into Eq. (19):

_, = f[_tf.ua _(¢a_eai)._¢. sa. =t_60e 0S.t _ea + 6G]J dV

+ f(t aOf .u t Ea G)6J dV f(6gJ g6J t a0- + - 60T.u J)dF0S" + + u

+ f[(h + _T.ua)_J + (_h + 6_T.u a) J]dF T (37)

Equation (37) is a general design sensitivity formula for linear and nonlinear

structures (geometric and material nonlinearities), and shape, non-shape and

material selection problems. Formula also gives sensitivity interpretations of

the adjoint state fields. For example, it shows that the adjoint displacement

field is sensitivity of functional _ with respect to variations of the body

force and surface tractions. This interpretation has been also derived in Refs.

21 and 22 for linear systems using the Lagrangian approach. Formula (37) also

shows that the adjoint strain field gives variations of the functional _ with

respect to the constitutive law, the adjoint stress field is related to vari-

ations of $ with respect to explicit design variations of the strain field, and

variations of _ with respect to variations of J can be recovered using adjoint

and primary fields. These sensitivity interpretations will be observed in the

example problems solved in the next section. These interpretations can be

invaluable in practical applications and numerical implementations.
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6. EXAMPLEPROBLEMS

Several analytical linear and nonlinear examples are solved to show use of Eq.
(37) and interpretation of various terms. Although these examples are simple, they
can be valuable in gaining insights into numerical implementation for larger complex
problems. Also in using Eq. (37), we will use standard symbols o for stress and

for strain.

Example I. Bar Under Self Weight

This example is taken from Ref. 7 where sensitivity of tip displacement with

respect to length L is calculated. We will calculate sensitivities with respect to

all parameters of the problem to demonstrate use of formula (37) for material,

cross-sectional and length variations. The problem definition and various trans-

formations are shown in Fig. 3. Small displacements and linear stress-strain law

are assumed. The displacement field for the bar is given as u(x) : fx(2L-x)/2E

where f is the body force per unit volume. Thus

u(L) = fL2/E; _u(L) : [L2/2E]6f+ [fL/E)6L (38)

+ (O)h - (TT,R/R_.R][E

There are at least two interpretations of this problem and both can be treated using
Eq. (37).

First Interpretation. In this case, Eq. (37) can be interpreted as a line

integral with x as the only independent variable. The stress-strain law of Eq. (3)

must be interpreted as force-strain law, as the structure is only a line element.

Note that this must be done with the formulas given in Refs. 14, 16, 18 and 20 when

0 //"//
m

o:AA

x=_L
.Jl

J=AL

VOLUME
MAPPING

0 ///// I I

I I
I I

!Ix
J

L_

WX

x =_L

J=L

LINE
MAPPING

0 /////

]N

DESIGN VARIABLES" f, E, A, L

Figure 3. Bar Under Self Weight
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variations with respect to the cross-sectional area are needed. While using Eq.

(37), the tip displacement can be treated as a boundary term or the interior term.

We will use the latter approach.

as

I -I
-- fO u(5)J 6(5-I)Jd5;

^

The functional for sensitivity analysis is given

G = u(_)J-16(5-1); G = J-16(_-I)^ (39)
,u

where 6(_-I) is the Dirac delta function.

obtained as

u(5) = FL2_(2-5)/2E;

e(_) = fL2(1-5)/E;

e = e(_)J -I = fL(1-_)/E;

N = EAe = fAL(I-_);

The primary and adjoint fields can be

a(u 5) = L_/EA

a(e 5) = L/EA

a I
e = ea(_)J - = I/EA

Na -- EAE a = I (4O)

where N is the axial force and ¢ = EAe. Equation (37) reduces to

_ f_(6fu a - + 6G)Jd5_- - ease - Na_e N_c a

+ f10(fua- Ne a + G)6Jd5 (41)

Note that since we are using line integrals, the body force f = fA must be used.

Various quantities for use in Eq. (41) are

_¢ = (A6E + E6A)j-IfL2(I-_)/E;
--4

6f = A6f + f6A

Re = e(5)_J -I = -f(I-£)6L/E

(42)

_G -- -U(_)J-2_(5-1)6L;

_ a = Ea(5)_j-1 = -6L/EAL

Substituting all the quantities in Eq. (41) and carrying out the integrations, we

obtain the required sensitivity equation which is the same as Eq. (38). The

sensitivity interpretations of the adjoint fields can be directly observed.

Second Intepretation. In this case, Eq. (3) will be treated as a volume

integral. The functional for sensitivity analysis is given as

f o; G = (AL)-Iu(5)_(_-I) (43)

The displacement and strain fields are the same as given in Eq. (40). However, the

stress-strain law is the usual Hooke's Law:
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a
a -- Ee = fL(1-_); a = I/A (44)

Equation (37) reduces to

_, = flofK (_fu a - EaSe _ aa_E _ g_a + _GiJd_d_

+ f_; (fu a - oea + Gl_JdAd _ (45)

Various quantities for use in Eq. (45) are

_¢ : fL6E(I-_)/E; _J = L6A + A6L; _G : -(A -I + L-I)G (46)

Substituting various quantities from Eqs. (40), (42) and (46) into Eq. (45), we

again obtain the sensitivity expression given in Eq. (38). The sensitivity inter-

pretation of the adjoint fields can be easily observed.

Example 2. Cantilever Beam

This example is also discussed in Ref. 7 where sensitivity of tip deflection

with respect to the length is given. Figure 4 defines the problem and the transfor-

mations to the reference volume. The design variables are chosen as b = (E,s,h,L).

The tip deflection using small displacements beam theory is given as w(L) -- pL3/3EI

and its variation with respect to the design variables is given as

_w(L) = - PL3 _E pL3h3 _s pL3sh2 _h + PL--_2_L (47)

3E2I 36EI 2 12EI 2 EI

P

_z E,I,L

lh s

V=AL = Lhs

I
y=S'r/ 1 1 I
z:h_ -(_,_)

J:AL
m

V=l

Figure 4. Cantilever Beam
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The functional for the tip deflection and the function G are given as

^

= flof (48)

^

G = (AL)-Iw(_)6(_-I); G -- (AL)-I_(_-I) (49)
,w

The primary and adjoint structure solutions are given

pL 3 pL3_ 2

w,_ = E-I--(I-_); w(_) - 6EI (3-_) (50)

a L 3 L3_ 2

w,_ = E-_ (I-_); wa(_) : 6-_ (3-_) (51)

The sensitivity formula of Eq. (37) is reduced to

f10f (-ease - o_e a - ease + _G)ALdAd_

+ f_f (-aea + G)_(AL) dAd_ (52)

The following quantities are needed to complete integrations in Eq. (52):

_hL-2 a a hL-2; ^e = _w ; = _w _G = w_(_-1)_(AL) -I
7

_¢ a aa = Ee; = e6E; _ = Ee

- -2)_e = _W _(hL ; _e a : _wa _(hL -2)

Substituting these quantities in Eq. (52) and carrying out the integrations we get

the sensitivity expression given in Eq. (47). It is interesting to again note that

the adjoint displacement field given in Eq. (51) represents the sensitivity of the

primary displacement field (Eq. 52) with respect to the load parameters P; i.e.
a

u (_) --d_/dP.

Example 3. Materially Nonlinear Problem

Consider the bar of Fig. 3 subjected to a load P in the x direction at the free

end. The material for the bar obeys a nonlinear stress-strain law e = Eel/2(e>0);

so ¢ = Ee I/2 We will consider E, A and L as design variables and determine sensi-

tivit_y of the tip deflection. Transformation to the reference volume gives x --L_,

a = AA, J = AL, V -- AL, and V = I. Nonlinear analysis of the primary structure
yields:
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2P2L _E 2p2L _ p____2
u(_) = A2E2,P2L----_"6u(L) -- A2E3 A3E2 6A + A2E2 _L (53)

The functional for sensitivity analysis is given as

(54)

G = A-IL-Iu(_)_(_-I);
^

G : A-1L-16(_-1)
,u

(55)

The adjoint structure is linear with the stress-strain law as

a a
g = _ g

,E
I Eel/2 a AE 2 a

=_" e - 2P e (56)

The equilibrium equation for the adjoint structure gives

a = 2PL_ a = 2PL

u (_) A2E2, u,_ A2E2
(57)

The sensitivity formula of Eq. (37) reduces to

I a-
_ = fof_(-e 6_ - oa_e - o_ea + _G)JdAdF.

A

+ flof (-oea + G)6Jdad_ (58)

Various quantities for Eq. (58) are

= u 5L -I = P2L a ua L-I = 2PL.
, A2E 2; e = ,_ A2E 2'

^

6G = uS(_-I)_(AL)
-I

o Eel/2= ; ¢ = (I/2)Ec I/2,
,E

I/26E ' a a_=_ • o =_
,E

Re = u,_L -I = -L-2u,_6L; 6c a = -L-2u:_6L

Substituting these quantities into Eq. (58), we obtain the sensitivity formula of

Eq. (53). It is interesting to observe sensitivity meaning of the adjoint displace-

a
ment field in Eq. (57); i.e. u (5) = d_/dP.

Example 4. Geometrically Nonlinear Problem

Consider the two bar structure shown in Fig. 5. The material for the structure

is linear, so _ = Ee. Transformation to the reference volume is shown in the
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figure. The design variables for the problem are b-- (E,A,L).
problem is given as

The strain for the

t
E =

O

• I 2
ItL - °L)/°L = _ w2L- -- E (59)

The deflection at the center and member strains are calculated as

p1/3 L _ I 2 p2/3L2
w-- e-- EL 2

(EA) I/3, = _ w - (EA)2/3
(60)

The incremental equilibrium equation in terms of displacement at the center is

3EAw2L-36w -- 6P. The functional for sensitivity analysis is given as

(61)

^

G-- (AL)-Iw(_)6(_-I); G : (AL)-I_(_-I) (62)
_W

The equilibrium equation for the adjoint structure (using the incremental equili-

brium equation of the primary structure) is given as

3EAL-3w2wa : flofT(AL)-l_(_-l)ALc_d_ -- 1

a L 3 L

3EAw 2 3E I/3AI/3p2/3
(63)

Total axial displacement and displacement at any point are given as

ua(L) wasin8 wawL -I wawL -I= = ; ua(_) = (64)

L

L

W o

O

L'E'A

o=AA

PI2

J=AL

Figure 5. Two Member Structure
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The adjoint strains are given as

a awL-2 _aL-2 -a ac : w = , _ : w w (65)

The sensitivity formula of Eq. (37) reduces to

_ = 2f1OI_[-ea_ @ - oa_e - o_E:a + 6G)Jc_dE_

+ 2S101_[-oea + G)_JdAd_
(66)

Note that factor of 2 is used because volume integrals in Eq. (37) are for the

entire structure. Various quantities for Eq. (66) are

_¢ = _6E; _ = e_L 2 = _w2L-36L; _ a = _a_L-2 = _2wwaL-3_L

I_ 2.-2 a -2;o = Ee = _mw b ; o = Ee a = EwwaL 6J = L6A + A6L (67)

Substituting these quantities into Eq. (66), we get

p1/3 L p1/3 L I/3_L_ = _E _A + (P/EA) (68)

3E4/3A I/3 BE I/3A4/3

which can also be obtained directly from Eq. (60). Comparing w and w a in Eqs. (60)

and (63), we again observe the sensitivity interpretation of the adjoint displace-

ment field.

Next, consider the member stress given in Eq. (67) as a = (p2/3EI/3)/(2A2/3).

Its design sensitivity is given as

p2/3 p2/3E1/3
_ -- 6E _A+(O)_L (69)

6E2/3A2/3 3A5/3

The functional for design sensitivity analysis is given as

(70)

The adjoint load G,u in this case is zero but initial strain in the adjoint
ai _ _ a

structure and stress strain law are given as e = G = (AL) -I o = E(ea-Eai)_-
J

,O

The adjoint equilibrium equation in terms of central displacement gives w a =

a
(wA)-IL/3 and e --wwaL-2 = (AL)-I/3. Substituting appropriate quantities in Eq.

(37), it can be verified that Eq. (69) is obtained. It can be also directly

a
verified that w = d_b/dP ---do/dP.
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7. CONCLUDINGREMARKS

A general formula for design sensitivity analysis of linear and nonlinear

structures using variational approach has been developed. Equations of continuum

mechanics are used and the concepts of reference volume and adjoint structure are

exploited. Use of the formula is demonstrated on a few simple analytical problems.

The theory can be easily adapted for finite element modelling of structures. The

finite element models for the primary and adjoint structures can be independent of

each other. For modelling of design optimization problems, the concept of a refer-

ence volume is translated to the concept of a design element that is invariant with

respect to design changes. These observations can have considerable implications in

numerical implementations for design sensitivity analysis and optimization of

complex structures.

Considerable numerical work has been done for design sensitivity analysis and

optimization of linear structures. I Material derivative approach has been exploited

for shape optimization. In this regard recent work of Choi and Co-workers, 23 Yang

and Co-workers 24 and Hou and Co-workers 25 is significant. Yang and Co-workers 24

have shown equivalence of variational and finite element formulations of design

sensitivity analysis of shape problems for linear structures. This equivalence can

also be shown for nonlinear problems. Hou and Co-workers 25 have discussed some

difficulties with the material derivative approach of design sensitivity analysis of

linear shape problems. They have suggested numerical procedures to improve accuracy

of the approach.

Design sensitivity analysis and optimization with nonlinear response is just

beginning to be studied. Finite element approach for nonlinear stresses, strains,

displacements and the buckling load has been recently studied. 26-32. More research

needs to be done to fully develop this area.
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ABSTRACT

In this paper, a close link is established between open loop optimal

control theory and optimal design by noting certain similarities in the gradient

calculations. The resulting benefits include a unified approach, together with

physical insights in design sensitivity analysis, and an efficient approach for

simultaneous optimal control and design. Both matrix displacement and matrix

force methods are considered, and results are presented for dynamic systems,
structures, and elasticity problems.

I. INTRODUCTION

Considerable interest is being shown in recent years on control of flexible

systems such as robots and space structures. In control theory and optimal

control in particular, the geometry (dimensions and shape) is given, and the

task is to develop a control law so as to ensure proper operation of the system

in an uncertain environment. In design, and optimal design in particular, the

task is to determine the geometry. Evidently, at least in the preliminary

design stages, there is interaction between optimal control and optimal design.

There is a need for better understanding of this interaction. In this paper, a

close link is established between these two disciplines. Specifically, the

similarity of the sensitivity calculations and adjoint equations is examined.

Practical benefits and new possibilities are discussed. Dynamic systems,

structures, and continuum elasticity models are considered. Both displacement

and matrix force methods of structural analysis are treated.

2. THE LAGRANGE MULTIPLIER RULE FOR CALCULATING SENSITIVITY COEFFICIENTS

The Lagrange multiplier rule is a well-known method for obtaining

optimality conditions in the presence of constraints. The rule, however, serves

equally well in obtaining expressions for sensitivity coefficients (or

derivatives) of implicit functions, as shown below.

Consider the scalar valded function f = f (x,b), where x is an (nxl)

vector of 'state' variables and b is a (kxl) vector of design variables.

function f is implicit in that for every vector b, x satisfies the state

The
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equation

g (x, b) -- 0 (I)

where g is (nx1) vector fdnction. It is desired to obtain the sensitivity
vector df/db. In design of structural and mechanical systems, f often

represents the stress or displacement of a point and Eq. (I) is the equation

of equilibrium. To illustrate the Lagrange multiplier rule for calculating

df/db, we first form the scalar valued function H as

H = f + IT_ (2)

where _ is an (nxl) vector of Lagrange multipliers or 'adjoint' variables.

Noting that f, g and H are functions of~x and b, we have, upon differentiating

H with respect to b,

dH/db = _H/_b + 3H/3x dx/db (3)

The idea behind the Lagrange multiplier rule is to require that I satisfy the

equations

_H/_x = 0 (4)

Assuming that _g/3x is a nonsingular matrix -- which is necessary for x to be

a unique solution to Eq. (I) -- and using Eq. (4), we can obtain _ from the

following 'adjoint equations':

[3g/3_] T _ = - _f/3_ T (5)

Equation (3) now provides the result

df/db = 3H/db (6)

or ,

df/db = _f/_b + AT 3g/_b. (7)

In Eq. (7), the term gT _/_b does not appear because of Eq. (I).

The fact that the Lagrange multiplier rule offers a unified approach to

design sensitivity analysis has been discussed in Ref. I. Further, the adjoint

method of design sensitivity analysis given in Ref. 2 results in the exact same

equations as obtained using the Lagrange multiplier rule. In this paper, the

use of this rule to obtain expressions for sensitivity coefficients helps to

establish a close link between optimal design and optimal control, as discussed
in the next section.
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3. OPTIMALCONTROLANDOPTIMALDESIGN

Optimal Control

To present the basic concepts, consider a dynamic system described by the

following nonlinear differential equations

= , , _ t _ tf (8)q (x(t) u(t) t); x(t o) given, to

where the 'state' x(t), an (nxl) vector function, is determined by the

'control' u(t), a (kxl) vector function. Consider a performance index given by

the scalar functional

_tf
F = t f (_(t), u(t), t) dt (9)

o

The optimal control problem is to find u(t) that minimizes (or maximizes) F

[3]. The Lagrange multiplier rule as discussed in the previous section, is used

to do this. Adjoin the system in Eq. (8) to F with multiplier functions (or

adjoint variables) _(t):

= tJtf if + IT (q _ _)] dt (10)

o

If we define the scalar function H, the Hamiltonian, as

H -- f + IT q (11)

and integrate the last term on the right side of Eq. (10) by parts, we obtain

= _ _T (tf) x (tf) + IT (to) _ (to)

tf T+ t [H + _ x] dt (12)
o

Now, consider the variation in F due to variation in the control vector

u(t) for fixed times to and tf and fixed initial conditions,

i ztf T
6 F = - IT _x I + IT 6 _ + (3H/3x + __ ) 6x~ dt

= tf = to t

tf

+ _--_ 6u dt (13)
t ~
o
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Since it is tedious to determine the variations 6x(t) produced by a given
6u(t), we choose the multiplier functions _(t) to satisfy

T

_x _x - _x
(14)

with boundary conditions

_T (tf) = 0 (15)

In view of the adjoint equations in (14) and (15), Eq. (13) yields

6F j tf= _H/_u 6u dt (16)
t ~ ~
o

The functions _H/_u can be interpreted as impulse response functions since

each component of _H/_u represents the variation in F due to a unit impulse in

the corresponding component of u at time t [3]. Furthermore, _H/_u can be

interpreted as the function-space gradient of F with respect to u. This last

interpretation is useful when using gradient methods to extremize F. For

example, choosing u(t) = -_ _H/_u corresponds to a steepest descent step to

minimize F.

Finally, it should be noted that setting _H/_u = 0 yields the optimality

conditions. In the special case when F is quadratic in x and u and Eqs. (8)

are linear, the optimality conditions together with the state equations (8) and

adjoint equations (14) and (15) can be solved in closed form, leading to the

Ricatti equations, which are very attractive in closed loop control since the

feedback law is independent of the state vector x and can be computed 'off-

line'.

Optimal Design

In optimal design of mechanical systems, it is required to obtain the

sensitivity vector dF/db where F is a cost or constraint functional of the

form

tf

F = / f(x(t), b, t) dt (17)

t
o

with b a (kxl) vector of design variables. For example, F represents a time-

averaged performance measure of a vehicle traversing a rough terrain. Most

gradient-based nonlinear programming codes require input of the vector
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dF/db. In Eq. (17), for a given b, { should satisfy the equations of motion
given by

_ = _ , _ t _ tf (18)_ (x(t) b, t); X(to) given, t o

As before, the use of the Lagrange multiplier rule requires the function

tf
i-- Ef + !T (q - _)] dt (19)

t"
o

Integrating the last term on the right side of Eq. (19) by parts yields

= - _T(tf) x(tf) + _T(t o) X(to)

+ tstf T[H + _ x] dt (20)
o

where H is defined in Eq. (11). Now, consider the variation in F due to

variations (or differentials) in b for fixed times to and tf, and fixed
initial conditions:

0 tf T

6 F -- - -_T 6x _ +-AT _x I + / (_H/_x + I ) 6xdt~ ~
f o to

f tf
+ t _Hl_b db dt

o

(21)

If we choose X(t) to satisfy the same adjoint equations as in the optimal

control problem in (14) and (15), we obtain

.tf
_F = t _H/Sb 6b dt

o

(22)

Since b is not a function of time, Eq. (22) yields the sensitivity coeffi-
cient vector
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j tfdF/db = t _H/_b dt (23)
o

Expressions as in Eq. (23) can then be fed into nonlinear programming codes to
obtain improved design vectors b. The main emphasishere, however, is to
show that the calculation of design sensitivity vectors is simply a special case
of open loop optimal control. That is, treating the control variables u(t) as
design variables enables us to obtain expressions for the sensitivity vectors.

The following advantages result from this observation:

(I) A general approach to design sensitivity analysis is
established.

(2) Physical significance of the adjoint variables is established. In
particular, in the above discussion, the functions _H/_u are
interpreted to be influence functions. The importance of such a
physical interpretation in structural design is discussed
subsequently.

(3) The fact that the adjoint equations are the samein the optimal
control and optimal design problems motivates an efficient gradient
approach for simultaneous handling of control variables and design
parameters. That is, functionals of the form

tfF = t f (x(t), _(t), b, t) (24)
o

where both control variables u(t) and design parameters b have to be opti-
mally chosen, can be treated efficiently. Such problems may arise, for example,
whendesigning both a control law as well as determining the dimensions and
shape for a robot or for a flexible space structure.

4. STRUCTURES

Matrix Displacement Method

The general results discussed in the preceding section lead to special

insights when applied to structural systems. Consider a scalar function

f _ f (x, b) (25)

where f typically represents the stress or displacement at some point in the

structure, b is a (kxl) vector of design variables, and x is the nodal
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displacement vector. If a finite element model of the structure exists, then
the (nxl) vector x is obtained from the matrix displacement (finite element)
equations

K(b)_ = P(b) (26)

where K is an (nxn) structural stiffness matrix and P is a vector of applied
nodal _oads. ~

The importance of applying optimal control concepts to structural systems

described by (25) and (26) will now be shown. The sensitivity vector

df/db will be obtained by using the Lagrange multiplier rule. Define the
function H as

H = f + !T (p - K x) (27)

where A is the (nx1) adjoint vector.

b is glven by

The variation of H due to a variation in

6H = _H/_b 6b + _H/_x 6x (28)

Choosing I to satisfy

_H/_x = 0 (29)

which can also be written as K _ = _f/_xT, we have from Eq. (28),

6f = _H/_b 6b (30)

which yields

df/db = _H/_b (31)

Now, in the foregoing analysis, let us consider the variation in H due to a

variation in P. That is, we consider variations in the 'control' vector

P instead of the design vector b. We have

6H = _H/_P 6P + _H/_x 6x (32)

Choosing I to satisfy the adjoint equation in (29), and noting that f and K

do not depend explicitly on P for linear structures, we get

6f = AT 6P (33)

or,

IT = df/dP (34)

Since the adjoint equations in (29) are the same regardless of whether the

fundamental variation is in b or P, Eq. (34) shows that the adjoint vector
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used in structural design sensitivity analysis represents the sensitivity
of the function f to variations in the applied loads P. Further, if f is
linear in P, then _i = value of f due to Pi = I. In civil engineering, _ is the
influence coefficient vector associated with the function f, as discussed in
Ref. 4. Further, since Eqs. (29) can be written as

K A = _f/_x T (35)

we can think of _ as a displacement vector associated with the load vector
_f/_x. This motivates the use of element shape functions to obtain expres-
sions for _ within the elements from knowing the nodal values. Thus, we can
write

_(_) = _ _. N.(_) (36)
i 1

i

where Ai are the nodal values obtained by solving Eq. (35) and Ni are the

familiar shape functions used in finite element analysis.

The beam in Fig. 1(a) is solved to illustrate this. A finite element model

of the beam is shown in Fig. 1(b). The function f is taken to be the moment at

support b. The adjoint vector _, representing the valJes of f due to unit

loads along each degree of freedom, is obtained by solving Eq. (35). Equation

(36) is used to obtain expressions for _ along the beam, which is used to draw

the influence line as shown in Fig. I(c). The results are in agreement with

those in Ref. 5, and show that the adjoint method is a new and powerful approach

for determining influence lines.

Some other interesting aspects relating to Eqs. (34) and (35) may now be

noted. If we let f be the strain energy function U given by

I T

U = _ x K x (37)

then Eq. (35) yields K _ : K x, from which _ = x. Equation (34) then yields

T
x -- dU/dP (38)

which is a discrete version of Castiglaiano's theorem for linear structures.

I T T
Also, letting f : : x K x - x F = potential energy, results in _ = 0 and d_/dP

= O, which is a statement of the minimum potential energy theorem_ ~ ~

Matrix Force Method

The systematic use of the Lagrange multiplier rule or adjoint method for

design sensitivity analysis and physical significance of adjoint variables,

which was discussed in the context of displacement finite element analysis, will

now be extended to structures analyzed by the the matrix force method.
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For indeterminate structures, the equilibrium equations in the matrix force
method take the form [6]

nF F~+ nx X_: P_ (39)

where x is a vector of 'redundant' or independent forces (and reactions),
F is a vector of dependent forces, and P is the vector of externally applied
forces. The redundants X are obtained from compatibility conditions of the
form

Consider now a function f (b, F, X). Note that matrices C and d also depend
on the design vector b. Form the function H as

H = f (b, F, X) + _T (p _ _F _ - _x _)

T
÷ (x- c P-

Consider the variation in H due to a variation in b:

6H = _f/_b 6b + (_f/_[ - _T nF ) 6[

+ (_f/3X - XT n + T) 6X - T (6C.P + 6d) (42)

Choosing _ to satisfy

T
nF k --3f/3F T (43)

and letting

_T : _T nx _ 3f/_X (44)

we have

6f = _fl_b 6b - _T (6C.P + _d) (45)

from which the sensitivity vector is obtained as

T
df/db = _f/_b - n _/3b (C P + d) (46)

The physical significance of the adjoint variables X and u is obtained in the

usual manner by considering the variation of H in Eq. (41_, due to a variation

6P is P. Upon defining _ as in Eq. (h3) and _ as in Eq. (44), we get
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6f = (_T _ uT C) 6P (27)

Thus, (! - CT _) is now the influence coefficient vector.

For statically determinate structures, the terms nx, X and _ vanish, and
Eq. (47) becomes

6f = AT 6P (28)

which is analogous to Eq. (33) that was obtained in the displacement method of
analysis. In this case, ki = value of f due to Pi = I, provided f is linear and
homogeneousin P.

5. ELASTICITY

This section will focus on elasticity problems. Consider a functional

F = f (oij) d_ (29)

where oij is the stress tensor, _ is the domain of the elastic body, and the
equilibrium equations in variational form are

J r (

,/°" (u) = .ioi T. dr ÷ i B.
iJ zj F z fl z

Equation (50) is satisfied for every displacement field ¢ satisfying qbi = 0 on

FI, u is the actual displacement field due to traction forces Ti and body forces

Bi, and kinematic boundary conditions u = 0 is imposed on a portion FI of the

total boundary. Equation (50) is simply the principle of virtual work, with

aij (¢) being the virtual strain due to a kinematically admissible virtual
displacement 0. As before, form the functional H as

H = I[f(oij) - oij(u) ¢ij(k)] d_ + k.T. dF + ki B. dC (51)
F z z _ z

where k satisfies k = 0 on FI. Consider a variation 6T i in Ti, and 6B i in Bi,

and let oij(v) and fij(v) be the corresponding variations in stress and strain,
respectively. The variation in H is given by

.6H = [_f/3o o. (v) - o.. (v) e (_)] dn

n ij lj Âj ij
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Equation (52) holds true for all kinematically admissible _, and consequently
holds true for a _ determined from the following adjoint equations:

_" oij (_) s''ij (_) d_ = _ f/3_ij oij (W) dC

which is satisfied for all _, T = 0 oH FI. Since

(53)

f
J o.. (_) E.. (_) dC = Ioij (_) _ij

ij zj

putting Y = v in Eq. (53), Eq. (52) yields

(I) d_

= J ÷ (54)6F Xi 6Ti z
F

Equation (54) is essentially a variational principle. If we let the functional

F be the complementary strain energy density, that is, we let

F [ J °ij
: Eij doij] d_ (55)

0

then Eq. (54) yields (upon using Leibnitz's rule)

_e 6o.. d_ : k. 6T. dr + _ _B. d_ (56)
ij zj F z z C i z

which is the principle of complementary virtual work [7]. Finally, sensitivity

expressions can be readily obtained if variation of H due to design variations

is considered as done in previous sections. This approach holds true for

a changing domain, as in shape optimal design [I]. From Eq. (54), we can see

that li at a point represents the value of F due to a unit load at that point.

This fact can be written in terms of Green's function as

Ii = _f (oij (Gi)) dn (57)

where the Green's function G is the displacement field due to a unit load.

6. FUTURE WORK

In both optimal control and optimal design, it is shown that the

Hamiltonian function and the Lagrange multiplier rule play a similar role.

Optimal control theory helps to obtain a unified fraa_ework for design

sensitivity analysis and physical understanding of adjoint variables. Some

areas which may merit future investigation are noted below.
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I •

•

•

This work motivates an efficient gradient approach for optimal design

of systems with control in mind. That is, both control variables and

geometric design parameters can be considered simultaneously in the

preliminary design stages•

In structures, the adjoint method provides a powerful method for

constructing influence lines in the framework of finite element

analysis• Also, the equation iT = df/dP can be used to design

structures which are insensitive to loads Pi by minimizing 12i, or can

be used to optimally locate the loads for maximum utilization of the

structure, by maximizing ITP subject to suitable constraints•

The stability analysis of the adjoint equations that has been carried

out extensively in optimal control theory may turn out to be of

importance to the design engineer•

o

I.

o

3.

o

•

•

1
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ABSTRACT

Design sensitivity analysis for composites will soon be available in

MSC/NASTRAN. The design variables for composites can be lamina thicknesses,

orientation angles, material properties or a combination of all three. With

the increasing use of composites in aerospace and automotive industries, this

general capability can be used in its own right for carrying out sensitivity

analysis of complicated real-life structures.

As part of a research effort, the sensitivity analysis has been coupled

with a general-purpose optimizer. This preliminary version of the optimizer

is capable of dealing with minimum weight structural design with a rather

general design variable linking capability at the element level or system
level. Only sizing type of design variables (i.e., lamina thicknesses) can be

handled by the optimizer.

Test cases have been run and validated by comparison with independent

finite element packages. The linking of design sensitivity capability for

composites in MSC/NASTRAN with an optimizer would give designers a powerful
automated tool to carry out practical optimization design of real-life

complicated composite structures.
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INTRODUCTION

The purpose of this paper is to present the considerations and the

resultant approach used to implement design sensitivity capability for

composites into MSC/NASTRAN. MSC/NASTRAN is a large-scale, general-purpose

computer program which solves a wide variety of engineering problems by the
finite-element method. In addition, as part of a research effort, MSC/NASTRAN

has been coupled with a general-purpose optimizer CONLIN to optimize composite

structures with sizing type variables.

The following sections will cover:

• The analysis of laminated composites in MSC/NASTRAN

• Theory for design sensitivity analysis for composites

• The program architecture and considerations that go into implementing

such a capability into a large-scale general-purpose computer program

• Basic optimization concepts and a brief description of the optimizer

CONLIN used for this study

• Numerical studies to validate the results

THE ANALYSIS OF LAMINATED COMPOSITE MATERIALS IN MSC/NASTRAN

Laminated composites may be conceptually viewed as a "stack" of laminae

with different orientations of the principal material directions in the

individual lamina. An exploded view of three cross-ply laminated plates is

illustrated in Figure 1. The n-laminae (n = 2,3,4) of each of the three

configurations are normal to the z-axis of the indicated coordinate system and
the 1- and 2-axes appended to the individual lamina denote principal material

axis directions. The directions of the principal material axes of each lamina

alternate as implied by the use of the word "cross-ply" to describe the

configuration. The xy-plane of the coordinate axes is defined in the

geometric middle plane of the laminae.

An entire "stack" of laminae may be modeled with a single plate or shell

element because the material properties of the "stack" are completely
reflected in the matrices of elastic moduli for the element. These matrices

are automatically calculated in MSC/NASTRAN from user-supplied definitions of

the thickness, the material properties, and the relative orientation of these

properties for the individual lamina. Once these matrices of elastic moduli
are calculated, the analysis proceeds in a standard manner. This capability

for the automatic representation of laminated composites is available in

linear static analysis, real and complex eigenvalue analysis, buckling

analysis, geometric nonlinear analysis, and a dynamic analysis [1].
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In the analysis of isotropic materials, strength is independent of the

orientation of the body under load and one may compare the largest computed

principal stress with an allowable stress to establish the integrity of the
structure. Laminated composites, on the other hand, are orthotropic materials

and may exhibit unequal properties in tension and compression. Thus, the

strengths of these orthotropic laminae are a function of body orientation

relative to the imposed stresses.

As the evaluation of the matrices of material moduli for laminated

composites provides sufficient information to determine the actual stress

field sustained by the material, the determination of structural integrity

will depend on the definition of an allowable stress field. The basic

ingredient of this definition is the establishment of a set of allowable

stresses or strengths in the principal material directions.

Xt = Allowable tensile stress in the principal x(or 1)-direction of
the material

X C = Allowable compressive stress in the principal x(or 1)-direction
of the material

Yt = Allowable tensile stress in the principal y(or 2)-direction of
the materi al

Yc = Allowable compressive stress in the principal y(or 2)-direction
of the material

S = Allowable shear stress in the principal material system

Failure index of an element is a measure designed to test whether the
state of stress in the worst-stressed lamina is within or outside the lamina's

failure envelope.

In addition, the interlaminar shear stress will be checked against the

allowable bonding stress (Sb) specified by the user.

The failure index for the laminate is the larger of the two values so

obtained. Three failure criteria are available in MSC/NASTRAN. They are

Hill, Hoffman and Tsai-wu. In this paper Hill's failure criterion will be

used, i.e.,
Z Z Z

01 aZ °laZ _IZ

x-'Z* V x2 ÷sT't

X = Xt if oI is tensile

= Xc if 01 is compressive

Y = Yt if 02 is tenslle

= Yc if 02 is compressive

For the product term, X = Xt if 01 and 02 are of the same sign; X = Xc
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otherwise. Basically the equation represents a failure envelope in the stress

space (figure 2).

If the state of stress in the orthotropic lamina lllm _2' °12 ) is such
that the stress point is within or on the envelope, the ina is said to be

"safe"; if the point is outside, the lamina is said to have "failed".

DESIGN SENSITIVITY CAPABILITY FOR COMPOSITES IN MSC/NASTRAN

Design sensitivity analysis for composites will soon be available in

MSC/NASTRAN. The design variable for composites can be lamina thicknesses,

orientation angles, material properties, or a combination of all three. With

the increasing use of composites in aerospace and automotive industries, this

general capability can be used in its own right for carrying out sensitivity

analysis of complicated real-life structures.

Design sensitivity analysis estimates the effects of interrelated design

variables such as element properties and materials on the structural response

quantities, such as displacement, stress, natural frequency, buckling loads,

and for composites lamina stresses and failure indices. Design sensitivity
coefficients are defined as the gradients of the design constraints with

respect to the design variables at the current design point. The method

chosen for incorporation into MSC/NASTRAN is called the Pseudo load technique,
based on a first variation (finite-difference scheme) of the systems

equilibrium equations with respect to the design variables.

Let _ilbj, Uql be a set of design constraints which are functions of bj

design variables _nd displacements Ug. The design constraints are expressed
as

+iIbj, Ug) • 0

The first variation in _i is given as

B$i_ _*i_

65i = [_T_J {6bj} 4-[_Tg j {6Ug}

Ix_ u-flxed jxl Ixn b-flxed nxl

consider Ug as a function of bj, then

_U

{_Ug_ = [T_j ] I6bj}

nxj jxl
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Thus

or

@u

The matrlx_-_4 can be evaluated by taking the first variation of the

systems equlllbrlum equation

[Kg]{Ug} ; {Pg}

or

or

[Kg]{AUg} + [Akg]{Ug} = {APg}

{AUg} = [kg]-ll{&Pg} -[&kg]Iug})

or

[AUg] = [Kg]-l(IaPg(Abl)}, {&Pg(Ab2)}, ..., {APg(Abj)})

- [Kg] -1 ([Akg(Abl)]{Ug }, [AkgCAb2)]tUg},.-.,[Akg(&bj)]{Ug))

The elements of [_j matrix for an element constraint, such as stress,

force, or a failure index, can be expressed by the relationship

or

{_bi} = [S]e{Ug }

[_-_g] = [S]tg
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The design sensitivity coefficient matrices may thus be expressed as

[^ij] = ({a--_iI,ta-_21, ..., tabjJ)lUfixe d

AU I AU 2 AU j

From this equation it is easy to see that the number of additional case

control records (additional loading cases) required for design sensitivity

analysis is equal to the number of design variables for each subcase (Pseudo-

Load Technique).

A typical term of the coefficient matrix may thus be written as

sB+AB uB
^ij = I AB

SBu B SBuB + AB SBuB

T) + F, ,,B

where B represents the base line or original state and B ÷ An represents the

perturbed state. The first expression in parentheses on the right-hand side

is thus the change in response quantity due to a change in design variable for

the original solution vector. The second term represents the change in

response quantity due to a change in displacement for the unperturbed design

variable. For displacement constraints, the first term in parentheses on the

right-hand side is identically zero.

The design constraints for composites can be lamina stresses or failure

indices, displacements, frequency, buckling loads, or forces. The design
variables can be lamina thicknesses, orientation angles or material

properties.

PROGRAM ARCHITECTURE

In order to understand the reasons behind how a development is introduced

into a large finite-element program, a knowledge of the program architecture

and technical purpose is necessary. A brief description of MSC/NASTRAN is

presented as background.

The cornerstone of MSC/NASTRAN's architecture is its Executive System,

whose essential functions are to establish and control and sequence of

calculations, to allocate files, and to maintain a restart capability.

Engineering calculations are performed by approximately 200 functional modules

which communicate only with the Executive System and not with each other.

Flexibility is maintained by a macro-instruction language called DMAP, which
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is under user control, but which also serves to establish preformatted calcu-

lation sequences for the major types of analysis, including linear analysis,
buckling, vibration mode analysis, and design sensitivity.

The calculation of finite element data is concentrated exclusively in a

few modules. The element matrices for stiffness, structural damping, and
differential stiffness for elements of the structural model are generated in
the Element Matrix Generator (EMG) module. These element matrices are

subsequently assembled to form the elastic stiffness matrix, the structural

damping matrix, the mass matrix, or the differential stiffness matrix.

The element contribution to the load vector is generated in the SSG1

module and the element stress and force are generated in the SDR2 module. In

all these modules, the finite element descriptions are defined in the Element

Summary Table, the EST table. The EST table contains the element connection,

material property and sectional property information.

Taking advantage of the table-driven concept used by the element modules,

much of the element dependent development could be avoided in implementing

design sensitivity if a procedure could be developed which would involve only
building EST tables that would cause existing modules to form the necessary
element data.

How a given capability is introduced into a commercial general-purpose

finite-element program is as important an issue to the user as its theoretical

sophistication. If the user views a capability as hard to use, as having an

insufficient capacity to solve his problem, or taking an inordinate time to

comprehend its output, the product is of little practical use. In addition,

the program developer, while heeding the user's needs, has to keep sight of

the program as a whole when adding new capabilities. This involves

interfacing well with existing capabilities, maintaining program reliability

and generality, and producing software that makes effective use of computer
resources.

The user interface is a major consideration in the design of a new

capability. The following issues were considered in DSA:

1. DSA input should be straightforward, but allow flexibility to model

complex structural design concepts

2. DSA output should be concise and easily understood

3. Avoid arbitrary program limits which restrict the allowable element

types, constraint quantities, and problem size

4. Provide an interface for external optimization postprocessors

A brief discussion of the processes involved in a typical DSA STATIC

analysis in MSC/NASTRAN will help bring into perspective the work involved in

the various parts of the DSA solution.
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DSA in a STATICS analysis is based on solving for {aUg} in the first-
order variation of the nodal equilibrium equation:

0

[Kgg]{aUg} = {aPg} -[aKgg]{U_}

The DSA problem in the paper isconsidered to be the additional task

required after the solution of primary analysis. By restarting from the

primary STATIC analysis, the solution of the DSA system equation only involves
the calculation of the right-hand side and the backward pass operation in the

solution of AU.

The work involved in solving the system equations (backward pass

operation) is a function of the product of the number of design variables and
loading conditions. The following DSA tasks are required in addition to

solving the system equations:

1. DSA Data Organization

2. DSA Data Assembly

3. DSA Data Recovery

These tasks are functions of the triple product of the number of design

variables, design constraints and loading conditions. For large DSA problems,

the data organization, assembly and recovery tasks are the dominant users of

computer resources.

Another major consideration was to support all structural finite-element

types in MSC/NASTRAN. Since a large number of the elements developed are

semiempirical, the determination of consistent element derivative formulations

cannot be practically accomplished. Therefore, a method was developed to
calculate element derivatives by a differencing scheme about the current

design point. This method involved the calculation of the element matrix at

the design point plus or minus the user-specified design variable increment.
These element data are differenced with the data at the design point to

determine the corresponding element derivatives. For example, the following

shows the change in element stiffness due to a change in the design variable.

[AKgg] = [Kgg + AB ] -[K;g]

Another benefit of differencing about the design point is that it avoids

most potential numerical problems. This is because the evaluation of the
perturbated element data is computed near a design point which has already

been determined to be numerically acceptable in the primary analysis.

To get an idea of the magnitude of the task involved, about 15 existing

subroutines comprising approximately 6000 lines of Fortran had to be modified,

in addition to coding approximately 10 new subroutines comprising 1000 lines

of Fortran. There are approximately 15 tables created for data organization
and manipulation.
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An initial analysis is carried out to identify critical constrains and a

data base created. In the succeeding run, information about constraints,

design variables, and maximum and minimum side constraints is supplied. A

special DMAP package was created which exploits the data base technology.

The user can control the number of iterations performed. He can restart

from the previous step. This is especially convenient, as he can scan the

output and intervene manually to either add or delete constraints or modify
design variables. Table 1 gives a schematic diagram of the program flow.

OPTIMIZATION CONCEPTS AND CONVEX LINEARIZATION

In order to validate the new design sensitivity capability for composite

structures, it was decided to introduce a numerical optimization module in a

special version of MSC/NASTRAN. It has then become possible to solve some

well-documented structural optimization problems, and to compare the results

with those produced by other finite-element systems having similar sensitivity

and optimization capabilities. In our opinion this pilot implementation

represents the most complete and reliable way of verifying that the
sensitivity analysis results are correct and accurate enough for a meaningful

exploitation. It should however be mentioned that only sizing types of design
variables (i.e., lamina thicknesses) are permitted in our optimization

module. This is because no proper formulation is currently available to deal

with optimization problems involving other types of design variables (e.g.,

orientation angles and material properties).

Structural optimization methods using finite-element models have now

reached a high level of reliability and efficiency. These methods can

currently address practical problems involving various types of design

variables (e.g., component transverse sizes, shape variables) and design

constraints (e.g., geometry requirements, maximum allowable stresses, bounds

on deflections, or frequencies). In addition the types of finite-element

models tractable by these methods have recently been largely extended so that

virtually all finite-element models that can be analyzed can now be addressed

by optimization techniques (e.g., bar, beam, membrane, plate, and shell).

A numerical optimization problem is characterized by a given objective
function f(x), which is to be minimized by determining the magnitudes of

design variables x, such that certain constraints on the x_'s are achieved.

This leads to a mathematical programming problem of the "primal" form:

minimize f{x)

such that
hi(x) ) 0 j-1,2,...,m

m

xi • xi • xi i=l,2,. .. ,n

where m is the number of behavior constraints and n, the number of design
variables.
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Such a problem can be solved iteratively by using numerical optimization

techniques. Each iteration begins with a complete analysis of the system
behavior in order to evaluate the objective function and constraint values

along with their sensitivities to changes in the design variables (i.e., first

derivatives). A design iteration is concluded by employing the results of

these behavioral and sensitivity analyses in a primal minimization algorithm

which searches the n-dimensional design space for a new primal point that
decreases f(x) while remaining feasible (i.e., satisfying the constraints

hi(x)). Many such iterations are usually required before achieving the
o_timum design. Until recently, because of the high-computation cost of each

iteration (full FEM analysis), structural optimization techniques based on

primal algorithms have been only conceivable on power mainframe computers.

An alternative to this primal formulation is the so-called "dual"

approach [2], in which the constrained primal minimization problem is replaced

by maximizing a quasi-unconstrained dual function depending only on the
Lagrangian multipliers associated with the behavior constraints. These

multipliers are the dual variables subject to simple non-negativity
constraints. The efficiency of this dual formulation is due to the fact that

maximization is performed in the dual space whose dimensionality is

relatively low and depends on the active constraint at each design
iteration. The dual approach is especially powerful when used in conjunction

with approximation concepts [3]. In particular, the convex linearization

scheme (CONLIN) [4], recently introduced to solve general structural

optimization problems, exhibits very good performance, even when dealing with

the inherently difficult problems involving changes in geometry.

In CONLIN each function defining the optimum design problem is linearized
with respect to appropriate intermediate variables (called "mixed" variables)

yielding a convex, separable problem approximation. The initial problem is

therefore transformed into a sequence of explicit subproblems having a simple
algebraic structure. The convex linearization scheme exhibits remarkable

properties that makes it attractive to replace the original primal subproblem
by its dual [2]. CONLIN can be viewed as a generalization of well-established

approaches to pure sizing structural optimization problems, namely
"approximation concepts" and "optimality criteria" techniques [5], and as such

it is capable of addressing a broader class of problems with considerable
facility of use.

Because of its many attractive features the CONLIN algorithm has been

selected to implement optimization capabilities in our pilot program. At each
successive iteration point, the CONLIN method only requires evaluation of the

objective and constraint functions and their first derivatives with respect to

the design variables. This information is provided by the FEM analysis and

sensitivity analysis results. The CONLIN optimizer will then select by itself

an appropriate approximation scheme on the basis of the sign of the

derivatives. CONLIN benefits from many interesting features.

The CONLIN approach is very general, requiring only values and

derivatives of the functions describing the optimization problem to

be solved; it permits therefore straight interfacing to the FEM
software;
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Because it is based on conservative approximation concepts, CONLIN

does not demand a high level of accuracy for the sensitivity analysis
results, which can therefore be obtained by finite differencing;

CONLIN usually generates a nearly optimal design with less than 10

FEM analyses;

CONLIN has an inherent tendency to produce a sequence of steadily

improving feasible designs;

The CONLIN method is simple enough to lead to a relatively small

computer code, and well organized to avoid high core requirements.

These features have considerably facilitated the implementation of reliable

and efficient optimization capabilities in our special version of MSC/NASTRAN.

NUMERICAL EXAMPLES

Two example problems were chosen to validate

highlight some of the salient features.

the capability and to

EXAMPLE 1 RECTANGULAR PLATE WITH A CIRCULAR HOLE.

A rectangular plate with a circular hole is subjected to a specified

displacement along the x-direction. The quarter model of the plate is shown
in Figure 3. The plate is modelled using QUADRILATERAL elements. Each

element consists of 4 laminae stacked at O°, 45 °, 90 ° and -45 °, respectively.

The region near the hole is divided into 13 regions. The 0° lamina for each

of the 13 regions is treated as a single design variable. The laminae at 45°
and -45 ° are linked and are treated as a single design variable for each of

the 13 regions. Similarly the 90° lamina is treated as single design variable

for each of the 13 regions. Thus there are a total of 39 design variables for

this problem. The model consists of 288 QUADRILATERAL elements and 317 grids.

The design constraints are the failure indices using the Hill criterion

selected for different lamina in specified elements. The model was optimized
for these selected constraints. The results are shown in Table 2. The

results were examined after iteration 5 to examine if the failure index

exceeded 1 for any of the elements which were not specified as constraints

originally. The violated elements were input as constraints and the

optimization loop started from this point onward. The algorithm converged in

9 loops. As can be seen, the user can intervene at specific points in the

algorithm and monitor the progress. This capability is particularly important

and convenient for realistic design of structures.

EXAMPLE 2

The second demonstration problem is a delta wing structure with graphite/

epoxy skins and titanium webs subjected to pressure loading and temperature

loading. The wing is shown in Figure 4. The problem has been previously

studied for frequency constraint in Reference 3. The structure is symmetric
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with respect to its middle surface which corresponds to the x-y plane in

Figure 4. The skins are assumed to be made up of 0°, ±45 ° and 90° high

strength graphite/epoxy laminates. It is understood that orientation angles

are given with respect to the x reference co-ordinate in Figure 4, that is,
material oriented at 0° has fibers running spanwise while material at 90 ° has

fibers running chordwise. The skins are represented by QUADRILATERAL and

TRIANGULAR membrane elements and the webs are represented by shear panels.

According to the linking scheme depicted in Figure 5, it can be seen that the

total number of independent design variables is equal to 60 made up as
follows: 16 for 0° material, 16 for ±45 ° material, 16 for 90° material and 12

for the web material. The model contains 56 QUADRILATERAL elements, 12
TRIANGULAR elements and 142 shear panels. The total number of nodes is 132.

The design constraint was the maximum deflection at the tipof the wingequal
to 10.0 in. The results are shown in Figure 6 for the objective function and
the tip deflection for the number of iterations.

After the Delta-wing was optimized for tip deflection of 10.00 in.,

parametric studies were carried out to study the effect of AB on the response

quantity. The fundamental frequency was chosen as the constraint and ply-
angle chosen as the design variable. All the 0° laminae in the wing were
linked together, as were the 45°/-45 ° and 90 ° laminae. The value of AR was

vaied from 10.0 to 10-7 and the results are shown in Table 3. As can be seen

from Table 3, the sensitivity coefficients gradually conver_e till aB equal to
10-5 and then begin to diverge. Thus for AB less than 10-_, round off errors

become significant enough to degrade the solution. The robustness of the

finite difference approach is, however, evident since even for AB as large as
0.1, the % error is only of the order of magnitude of 1%.

It was also decided to investigate the effect of linked design variables

on fundamental frequency as a constraint. The results are shown in Table 4,

where ply-thicknesses, orientation angles and Young's modulus along the

principal direction were chosen as the design variables. The sensitivity

analysis, by itself has little value unless used in an optimization context.

Table 5 gives the CPU times on the VAX-11/780 machine for the two example

problems. As can be seen, the optimizer itself takes very little time. Since

normally, 5 to 10 iterations are required for optimization, sensitivity

analysis and the reanalysis after updating the design variables constitute the

expensive portions of the design process. Efforts to enhance efficiency for

sensitivity and reanalysis would go a long way toward making the design of
realistic structures a viable proposition.

CONCLUSIONS

The design sensitivity capability for composites to be available in the

next release of MSC/NASTRAN was designed for generality, whereby the design

variables can be laminae thicknesses, orientation angles, material properties

or a combination of all three. It is envisaged that this capability would
constitute a powerful first step toward optimizing composite structures.
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Furthermore as part of a research effort MSC/NASTRAN was linked to a

general -purpose optimizer CONLIN for fully automated structural design

synthesis. It has been demonstrated that the coupling of a large-scale finite

element package like MSC/NASTRAN with a powerful optimizer will give designers

a powerful tool to carry out practical optimization of real-life complicated
structures. It should however be mentioned that only sizing type of design

variables (i.e. lamina thicknesses) are permitted in our optimization

module. This is because no proper formulation is currently available to deal

with optimization problems involving other types of design variables (e.g.,

orientation angles and material properties).

A unique feature of the coupling is the capability for the user to

intervene at any stage of the redesign process and to modify design

constraints or design variables and to carry on from the previous stage. Man-

machine interaction is an essential ingredient for realistic optimization of

structural problems.
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TABLE 1. FLOW CHART FOR OPTIMIZATION PROCEDURE

IINITIALANALYSIS1

CREATEDATABASE

_[ SENSITIVITY1ANALYSIB

l
[co..,NOPT,',ZERI

(U"DA'rEOE,,O.,,A,,,AB'ESI
@

I,,,sc.,NA,r,:,,,ANAL',S_,I

UPDATEDDATABASE

I CHANGECONSTRAINTSOR 1
CHANGEDESIGNVARIABLES
CRE)kTENEWNASTRANDECi(.

I PRINTRESULTSI

TABLE 2. RESULTS OF OPTIMIZATION

ANALYSIS

NUMBER WEIGHT

1 .3575

2 .3562

3 .3545

4 .3541

5 .3540

6* .3539

7 .3554

8 .3552

9 .3552

10 .3552

01 02 03 04 05

1(00) 1(45) 2(00) (2-45) 3(00)

1.1632 1.1421

.9446 .9076

.9886 .9238

.9948 .9160

.9982 .9164

.9990 .9983

.9388 .9469

.9552 .9651

.9585 .9690

.9594 .9700

1.0999 1.1053 1.1634

.9799 .9921 .9871

.9855 .9994 .9805

.9854 .9999 .9769

.9853 1.0000 .9757

*User Intervention
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TABLE 3. VARIATION OF SENSITIVITY COEFFICIENTS WITH RESPECT TO AB

AB A

10.0

1.0

.1

.01

.001

.0001

.00001

.000001

.0000001

-.072539

-.082207

-.082766

-.082803

-.082819

-.082836

-.082940

-.079559*

-.098504

TABLE 4.

*Degrades

SENSITIVITY COEFFICIENTS FOR FUNDAMENTAL FREQUENCY

DESIGN VARIABLE SENSITIVITY COEFFICIENTS

Ply-Thickness

Ply-Angles

Material Properties

0 ° 0.38200

45°/-45" -0.89380

90 ° -0.01774

0 ° -0.08280

45"/-45" -0.10490

90 ° -0.00633

0 ° 1.48870

45°/-45 . 0.22640

90 ° 0.00444
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TABLE 5. ESTIMATE OF CPU TIME ON VAX 11-780

Initial Analysis

Sensitivity Analysis

Optimization

Analysis

Per Iteration

Example 1 Example 2

Rectangle with Cutout

650 DOF

39 Design Variables

430 Secs.

257 Secs.

(39 Constraints)
190 Secs.

(10 Constraints)

3 Secs.

135 Secs.

395 Secs.

(39 Constraints)
330 Secs.

(t0 Constraints)

Delta Wing

400 DOF

60 Design Variables

300 Secs.

180 Secs.

(6 Constraints)

3 Secs.

115 Secs.

300 Secs.

(6 Constraints)
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Figure 2. Typical failure envelope for a material such as concrete.
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Figure 3. Finite-element model of one-quarter plate.
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Figure 5. Delta wing design model (problem 2).
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OPTIMIZATION OF SHALLOW ARCHES

AGAINST INSTABILITY USING SENSITIVITY DERIVATIVES +

Manohar P. Kamat
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SUMMARY

In this paper the author discusses the problem of optimization of shallow

frame structures which involve a coupling of axial and bending responses. A

shallow arch of a given shape and of given weight is optimized such that its limit

point load is maximized. The cross-sectional area, A(x) and the moment of inertia,

I(x) of the arch obey the relationship I(x) = p [A(x)] n, n = 1,2,3 and p is a

specified constant. Analysis of the arch for its limit point calculation involves

a geometric nonlinear analysis which is performed using a corotatlonal formulation.

The optimization is carried out using a second-order projected Lagrangian

algorithm and the sensitivity derivatives of the critical load parameter with

respect to the areas of the finite elements of the arch are calculated using

implicit differentation. Results are presented for an arch of a specified rise to

span ratio under two different loadings and the limitations of the approach for the
intermediate rise arches are addressed.

INTRODUCTION

With the advent of highly flexible large space structures the nonlinearity of

response of such structures plays a dominant role in the control of such structures.

Naturally, optimization of structures in nonlinear response is gaining prominence.

This paper addresses the issue of optimizing shallow frame structures in nonlinear

response involving a coupling of axial and bending actions. The objective is to

optimize a shallow arch of a given shape and given weight such that its limit point

load is maximized. Besides having to perform a nonlinear analysis in calculating

the limit point load an issue of even greater concern is that of calculating the

sensitivity derivatives of the critical load parameter with respect to the design

variables, namely the cross-sectional areas of the elements of the discretized model

of the arch. Two approaches are available for the calculation of sensitivity

derivatives: the direct and the adjoint approach [I]. In general, the adjoint

approach is preferred for problems involving nonlinear response [2] - [4]. The

popularity of the adjoint approach stems from the fact that the differential

equations governing the adjoint variable are linear even though the corresponding

equilibrium equations in terms of the true displacement variables are nonlinear.

But to date the author is unaware of the use of the adjoint approach for problems

involving limit point instability. The present work outlines a direct approach

÷ This work was supported by the National Science Foundation under Grant No.
ECE-8596016.
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similar to that used by the author and his co-worker in the case of shallow space
trusses [5]. In this approach the sensitivity derivatives of the critical load
parameter are obtained through an implicit differentiation of the nonlinear
equilibrium equations as explained below. The present discussion is restricted to
finite-element models of shallow arches whosecross sections obey the relationship

I(x) = p [A(x)] n , n = 1,2,3, p = specified constant (I)

SENSITIVITY DERIVATIVES OF THE CRITICAL LOAD PARAMETER

Consider a shallow arch under a given distribution of loading. Assume that

_cr is the smallest value of the parameter by which the given distribution of
loading must be scaled in order to produce instability of the arch. The parameter

is then defined by the solution of the following system of equations of a finite-

element model of the arch.

8___ = 0 (2)

8qj.

_2 I = 0 (3)

I _qj _qj

where _ denotes the total potential energy of the model undergoing finite

displacements and qi, i = I, 2 ...N denote the generalized nodal displacements of
the model. The load parameter _ occurs implicitly in Eqs. (2) and (3). Assume

that Ak for k = 1,2... m are the m design variables, which for the arch are the
8_

cross-sectional areas of the finite elements. To obtain 8Ak we proceed as

follows:

Rewrite Eqs. (2) and (3) as

f£(qj.(Ak) , _(Ak) , Ak) = 0
(4)

g (qi(Ak), _(Ak),A k) = 0
(5)

i,£ = I, 2 ... N

k= I, 2 ... m

An implicit differentiation of Eqs. (4) and (5) with respect to A k leads to
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_fl _fl

_ql _q2

_f2 _f2

_ql _q2
t •

_fN _fN

_ql _q2

g _g •ere•co •

_ql _q2
m

for every k = 1,2 ...m.

_qN _A

_fN _fN

_qN _
m

_q2

i _A k

_qN

K

_A k

_Ak

_f2

_Ak

_fN
m

_A k

These equations may be written symbolicaily as

(6)

_q

_Ak

(7)

where H is the Hessian matrix of the potential energy of the finite-element model

of the arch, F is the given vector of nodal forces, and G is the row matrix of

derivatives-of the determinant g of the Hessian matrix with respect to nodal

displacements. Equations (7) assume that _g is equal to zero since for constant

directional loading parameter % does not occur explicity in the stability

criterion. The elements of G can be evaluated by using the formula

_g = trace { (adj (H}) [ _q ] }_ql
(8)

_H

where [ -_j] is the matrix obtained by differentiating each element of the deter-

minant of H with respect to a typical component qi. With this, the sensitivity

derivat_ve _--_ can be calculated by the solution of Eqs. (7) at a given (q,_).

Incidently, Eqs. (7) apply everywhere along the loading path including the limit

point. It is only at a bifurcation point that the determinant of H is not differ-

entiable. For very shallow arches instability typically occurs through snap-

through and hence Eqs. (7) clearly apply.
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SPECIALIZATION TO A FRA_ ELEMENT MODEL OF THE ARCH

U

6 : [T]
v

6
w

We illustrate the derivation of the sensitivity derivatives for a finite

element model with 3-D frame elements. For its kinematic description the frame

element uses the co-rotatlonal formulation as outlined in great detail in reference

[6]. According to this formulation, which permits large rigid body motion of the

element, the total motion is decomposed into a rigid body component and a strain-

producing component. For an element p-q of length L, the displacements of the end

q relative to the end p in the body fixed axes can be shown to be i

- L U - U 1Xq Xp q P

!
Yq - yp 0 • [T]p V - V (9)P q P

U i , V i , and W i

z - z
q P W -W

q P

(i = p or q) denote the global displacements of the nodes and

matrix [Tip is [6].

[T]p = [T1(¢x,_y,_z)][T1(Sxp,Syp,Szp)] (1o)

with

[T 1(mx,_y,_z)] =

b

C C C S 8
yz yZ - y

-C S ÷ S S C C C + S S S S C
xz xyz xz xyz xy

S 8 + O 8 C -S C ÷ C S 8 C C
XZ xyz XZ xyz xy

(11)

ci = cos mi' si = sin mi for I = x,y and z. Angles Cx,#y and _z are the initial

orientation angles of the frame element and the angles Oxp , @yp and ezp are the

rigid-body rotations of the end p. In deriving Eqs. (10) Euler angle

transformation is implied with the order of the rotations being mz' my and m x.

Similarly, with the restriction of small relative rotation within the element,

the rotations _x' _y

_x

_y

_z

and V of the end q relative to the end p are
z

[T]p

8xq - 8xp

8yq 0yp

Ozq 8zp

(12)
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E iAe(6u)2 + 12 n [(6Ue = U(p_q) = -_e _ pzAe v)2

Assuming the relative axial and transverse displacements to be linear and
cubic, respectively, the strain energy of the (p-q)th or the e-th element, e =
1,2...m can be shown to be [6].

L2
÷ e _2 _ Le(6v)(_z) ]3 z

Hence

L 2

+ 12 n [(6w)2+ 3 _2 ÷ Le(6w)(_y)] }pyAe y
(13)

m

= _ U e - FTq (14)
e=1

T

where _ = (Up, Vp,Wp,0xp,0yp,ezp, Uq, Vq, Wq, 0xq, 0yq, 0zp). All the expressions

for the evaluation of matrices in Eqs. (7) are now avaJlable and, in principle, can

be evaluated even though the algebra may be rather tedious. The above expressions,

especially the [T]p matrix, can be simplified using the assumption of small rigid
body motions within a load step.

Indeed, Updated Lagrangian formulation for the kinematic description may have

simplified matters quite a bit especially if the expressions are linearized within

a load step but the above expressions using the co-rotational formulation permit

truly large displacements and with an highly efficient algorithm for the solution

of nonlinear equations like for instance the BFGS algorithm [7], it can permit

relatively large load steps resulting in a fewer number of load steps to attain a

given load level.

CONSTRAINED OPTIMIZATION

The optimization problem consists of maximizing the critical value of the load

parameter I subject to the constraint on total volume of the structure and side

constraints on member sizes. Although it is perfectly permissible to pose the

problem as

rain (f(A) = - l) (15)

Subject to

_IT
-- = 0

3qj

(16)

327
I I : 0  17)

_qi3qj
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m

AlL i - V ° = 0 (18)
i=I

A. - A . _>0 (19)
]. m]n

experience suggests the following well-posed problem

min (-_ ) (20)
cr

subject to

m

A. L. - V = 0 (21)
1 1 0

i=I

• - > 0 (22)A]. Ami n =

where Acr is located by incrementing the load parameter and locating its level at

which the determinant of the Hessian vanishes. This can be done by monitoring

either the determinant or the inertia of the eigenvalues of the Hessian matrix H.

Once an interval is located where the critical point is supposed to lie i_s

exact location Is determined by a root-finding technique. With Eqs. (15)-(19)

there is no guarantee that the lowest value of _ that satisfies Eqs. (17) will

always be found.

The problem as posed by Eqs. (20)-(22) is solved by using Powell's variable

metric algorithm for constrained optimization (VMCON) [8]. The required gradient

of the Lagranglan function corresponding to Eqs. (20)-(22) involves the gradient

of the load parameter which is calculated using the expressions derived in the

previous section.

DISCUSSION OF RESULTS AND CONCLUSIONS

The first step was to validate the accuracy of the sensitivity derivatives.

This validation was performed by comparing the analytically calculated derivatives

using the expressions (6)-(8) with those calculated using central differences.

Since no previous studies exist that address the problem being discussed herein, it

was essential to generate a basis for commparison. Such a basis was provided by

designs that corresponded to maximum potential energy of the nonlinear deformations.

Even though previous studies on shallow trusses [5] have confirmed the

non-optimality of such designs they are relatively easy to generate and provide a

basis for comparison with truly optimum designs.

It can be easily verified that designs which correspond to maximum potential

energy satisfy the condition

(Us + n Ub)
e e

Se V = C = constant; e = I, 2...m (23)
e
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s Ub and V are the strain energy due to stretching, the strain energy duewhere Ue, e e

to bendin_and the volume of the eth element,respectively.

Relations (23) can be easily met by a recurrence procedure that evolves
design for the (r÷1)st iteration from that of the rth iteration according to

S p
r I = Ar [ e ]Ae÷ a e S

avg
where

m
Savg : ( [ Us ÷ n ub]/v

e=1 e o

(24)

(25)

a is a constant such that

m

Ar+ I L = V
e e o

e=1

and p is a suitable exponent usually chosen to be equal to I/2. Several designs

for a concentrated load at the crown and a uniformly distributed vertical loading

were generated for n = 1,2,3 using the mathematical programming procedure, VMCON

and the recurrence relations (23)-(24). Table i provides a comparison of these

designs. Differences between the two designs are indeed drastic especially for n =

3. A curious phenomenon was observed during the recurrence procedure namely, that

several non-converged intermediate designs had higher critJ.cal (limit) loads than

the final fully coverged designs with a uniform specJ, fic energy density

distrlbutJ, on. Th._.s is to be expected since the fully converged designs are

non-optlmal. Table 2 provides the material distributions in terms of the

non-dimensional areas of the five frame elements used to model half the arch.

_x
An attempt to optJ.mlze a five element arch model with y(x) = 5 sJ.n i-_ failed

for n = 2,3 because no limit point load could be determined. This is not

surprising since for very low rise to span ratios the arch is likely to behave more

llke a flexible nonlinear beam with no susceptJ.bility to snap-through. Likewise

for arches with high rise to span ratios J.nstability occurs by bifurcation at load

levels far below their limit points and hence the problem belongs to the class of

linear eigenvalue problems. For arches with intermediate rise to span ratios the

type of instability can change from the initial limit point to a bifurcation type

at convergence. In fact the two points may coincide during optimization at which

point the critical load parameter is no longer differentiable with respect to the

design variables. Recourse must be then made to techniques of nondifferentiable

optimization [8].
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Table I. Comparison of Designs for Different Loadings on an Arch

y(x) a sin _x= -- ; a = 10,

L

L = 100

(Acr)OPT / (Acr) unif-

Type

of Design Concentrated Load at the Uniformly Distributed Vertical

Crown Loading

n = I n = 2 n = 3 n = I n = 2 n = 3

VMCON

with Sensitivity

Derivatives

Max. Potential

Energy

with Recurrence

Procedure

1.033

1.047

1.305

1.064

2.15

I.092

1.0013

I.0O5

1.207

1.024

1.932

I.048

Table 2. Material Distributions for the Optimal Arch Designs of Table i Using VMCON

Type of Loading

Concentrated

Load at

the Crown

Uniformly

Distributed

Vertical Loading

n

I

2

3

(Ae)oPT/(Ae)unif"

e = I e = 2 e = 3 e = 4 e = 5

0.8774 0.8662 0.8839 1.0452 1.340

0.7036 0.8370 0.9963 1.1577 1.3153

0.5780 0.8860 1.0700 1.1953 1.2907

0.9471 1.0240 1.0455 1.0080 0.9760

0.7662 0.9526 1.0663 1.1080 1.1168

0.6122 0.9285 1.0927 1.1738 1.2095
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SUMMARY

A survey of methods for sensitivity analysis of the algebraic eigenvalue problem
for non-Hermitian matrices is presented. In addition, a modification of one method

based on a better normalizing condition is proposed. Methods are classified as Di-
rect or Adjoint and are evaluated for efficiency. Operation counts are presented in
terms of matrix size, number of design variables and number of eigenvalues and
eigenvectors of interest. The effect of the sparsity of the matrix and its derivatives is
also considered, and typical solution times are given. General guidelines are estab-
lished for the selection of the most efficient method.

Introduction

The behavior of many physical systems is completely determined by the
eigenvalues of the system. Variations in parameters lead to changes in these
eigenvalues and hence in response characteristics. Thus derivatives of eigenvalues
and eigenvectors are of immense interest in several fields of physical sciences and
engineering.

The derivatives (or synonymously, sensitivities) are of interest for a variety of
uses. Design optimization is intimately connected with sensitivity analysis and the
cost of calculating derivatives is the dominant contributor to the total cost in many
optimization procedures. Most optimization algorithms require many analyses of the
system and derivatives can be effectively used to approximate the eigenvalues and
eigenvectors of a modified system and thus reduce the cost of reanalysis, especially
in large systems. In addition, derivatives are very useful in design trend studies and
for gaining understanding of and insight into the behavior of physical systems.
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Finally, derivatives of eigenvalues are valuable in calculating the statistics of

eigenvalue locations in probabilistic analyses.

The application of derivatives is not restricted to design-oriented activities.

Sensitivity analysis is also playing an increasing role in determining the analytical

model itself. In the areas of system identification and analytical model improvement
using test results, sensitivity analysis is of growing importance. Much recent work

in these fields is directly dependent on the calculation of eigensystem derivatives.

It has been found in certain cases that second order derivatives are effective in

improving accuracy of approximations[I-7] and efficiency of design[3,8,9].

Eigenvalues are usually non-linear functions of design parameters and a second or-

der approximation offers a much wider range of applicability compared to the first

order approximation. Intermediate variables which may improve the quality of first

order approximations are not generally available for eigenvalue approximations.

Also, some optimization algorithms require second order derivatives, and first order

derivatives of optimal solutions require second order derivatives of constraints[7].

The use of second derivatives can also greatly reduce the number of reanalyses re-

quired for the convergence of an optimization procedure[8,10]. Further, in certain

optimization algorithms, second order approximations for eigenvalue constraints can

drastically relax the move limits, thus achieving a nearly optimum trajectory, and can

virtually eliminate the need for trial and error adjustment of move limits, thus im-

proving the performance of the optimizer[10]. Looking at another aspect, in problems

where instabilities are to be avoided, a first order calculation may completely fail to

detect instabilities[2]. References [11,12] also offer examples of the usefulness of
second order derivatives.

The problem of calculating the derivatives of symmetric and Hermitian

eigenproblems is relatively simple and solution procedures are well-established,

e.g.[13-17]. However, many physical problems give rise to non-self-adjoint formu-

lations and thus lead to general matrices. An important example is aeroelastic sta-

bility which requires the solution of eigenproblems with complex, general and fully

populated matrices. General systems are also obtained in damped structural sys-

tems and. in network analysis and control system design where the eigenvalues are

usually called poles. This study presents a comparative analysis of the various

methods available for calculating the derivatives of the general eigenproblem and

propose some modifications to existing techniques. A considerable amount of liter-

ature is available on the subject and a comparative analysis of the various methods

will be of value for selecting the most efficient technique for a particular application.

The purpose of this paper is to summarize the more efficient techniques proposed

so far and to establish guidelines for the selection of the appropriate method for a

given problem. Only the essentials of these methods are presented with details re-

ferred to the original references. Attention is restricted to the general eigenproblem

and techniques that are useful only for the self-adjoint problem are not considered.

The present discussion is limited to the case of distinct eigenvalues.
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Problem Definition

The matrix eigenproblem is defined as follows:

All(k) = k(k)u (k) (1)

and the corresponding adjoint problem is

v(k)TA = k(k)v (k)m (2)

where A is a general complex matrix of order n and _.(k), u(k) and v(k) are the k -th
eigenvalue and right and left eigenvectors respectively. The superscript T denotes
the transpose. All eigenvalues are assumed to be distinct.

The matrix A and hence, 2_(k), u(k) and v(k) are functions of design parameter

vector p with individual parameters denoted by Greek subscripts, e.g. p_. Deriva-
0A

tives with respect to Pa are denoted by the subscript ,a e.g., _p_ - A _. All the
design variables are assumed to be real.

The well-known biorthogonality property of the eigenvectors is given by

v(i)Tu (J_ = 0 iff i _ ] (3)

Note that, the left hand side of eq. (3) is not an inner product as usually under-
stood, since v(i) and/or u(J) may be complex vectors. The left eigenvectors of A are
the right eigenvectors of A T and vice versa.

Normalization of Eigenvectors

The eigenvectors u(k) and v(k) are not completely defined by eqs. (1) and (2). A
normalization condition has to be imposed to obtain unique eigenvectors. For brev-
ity, let us consider only the normalization of the right eigenvector. A normalizing
condition frequently imposed in the self-adjoint case is the following:

u(k)Tu (k) = 1 (4)

However, it is not always possible to use eq. (4) for non-self-adjoint problems as
u(k)Tu(k) can equal zero or a very small number causing numerical difficulties. This
is true even if the matrix A is real. Unfortunately, considerable confusion exists in the

literature regarding this point and several authors arbitrarily adopted eq.(4) as a
normalizing condition for non-self-adjoint problems, e.g.[8,9,11,18-21]. In this re-
spect, the formulations of these references are not rigorous for general matrices.

One possible way to avoid the above difficulty is to replace eq.(4) by

u(k)*u (k) = 1 (5)

where superscript * denotes a conjugate-transpose. Eq. (5) is not prone to the diffi-
culties of eq. (4) because u(k)*u (k) is always guaranteed to be non-zero. But, eq.(5) is

not a complete normalizing condition as it does not render the eigenvector unique.
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If u satisfies eq.(5), then w = ue ic, where i = _/-1 and c is an arbitrary real num-

ber, also satisfies eq.(5).

Another normalization condition, inspired by the biorthogonality property of the
left and right eigenvectors, is

v(k)Tu (k) = 1 (6)

Eq.(6) also does not render the eigenvectors unique. It must be emphasized that
if the eigenvector is not unique, neither is its derivative.

The normalization condition

U(mk) = 1 (7)

is very attractive because it renders the eigenvectors unique and at the same time,
the index m can be chosen easily to avoid ill-conditioning. Apparently, only

Nelson[22] used this normalizing condition in obtaining the derivatives of
eigenvectors. The index, m, may be chosen such that

lu )l = maxlu!k)l (8)
I

Another choice for m, used by Nelson[22], is

(k)l max lu k)l Iv ")llu )l Iv,. =
I

(9)

The nature of uncertainty of the derivative of the eigenvector is of some interest.

Without a normalizing condition, an eigenvector is uncertain to the extent of a non-
zero constant multiplier. The derivative of an eigenvector is uncertain to the extent
of an additive multiple of that eigenvector. To show this, let u(k) be an eigenvector

so that w(k) = cu(k) is also an eigenvector. Then, if Pa is a design parameter,

_w (k)
= ._(cu(k)) -- C 0u(k----_)+ du (k) (10)

_Pa _Pa _Pa

where d = (ac/Op_) is arbitrary. In practice, the constant d depends on the way the
eigenvectors u(k)and w(k) are normalized.

Methods of Calculation

The various methods of calculating the derivatives
eigenvectors can be divided into three categories:

.

2.

3.

of eigenvalues and

Adjoint Methods, which use both the right and the left eigenvectors.

Direct Methods l which use only the right eigenvectors.

Iterative Methods, which use an iterative algorithm that converges to the re-
quired derivatives.
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Adjoint Methods

The first expressions for the derivatives of eigenvalues of a general matrix seem
to have been derived by Lancaster[23]. Considering only a single parameter,
Lancaster obtained the following expressions for the first and second derivatives of

an eigenvalue:

v(k)TA, _U (k)
t, (k) = (11)

, a v(k)Tu(k )

7.(k)_ v(k)'TA u(k) _, [, (v(k)'/'A aU('/')) (V('/')TA au(k)) 1
= , as + 2 ' ' (12)

' _ v(k)Tu(k) jJ=#=klL (_(k) _ l,(j))(v(k)Tu(k)) (v(J_Tu(J_)/
An expression corresponding to eq. (11) for a generalized quadratic eigenvalue
problem was obtained by Pedersen and Seyranian[24].

Morgan[25] obtained an expression for the derivative of an eigenvalue without
requiring the eigenvectors explicitly. His expression is equivalent to

trace of ([adj(A - x(k)I)]A,_)
t, (k) = (13)

,(1

trace of adj(A - l,(k)l)

The corresponding expression for derivatives with respect to matrix elements was
derived by Nicholson[26].

It can however be shown that[27]

adj(A - x(k)l) = tku(k)v (k)T (14)

where tk is a constant and that[28]

trace of ([adj(A - _,(k)l)]A,_ : tkv(k)TAau(k)

trace of adj(A - _,(k)l) = tkv(k)Tu(k)

(15)

Thus, in the computation of adj[A - l,(k)l-I, both right and left eigenvectors are

implicitly computed, in view of eq. (14). Eqs. (15) also show that Morgan's eq. (13) is
equivalent to Lancaster's eq. (11). Woodcock[29] also obtained formulas involving
the adjoint matrix for the first and second derivatives of eigenvalues. An operation

count shows that calculation of the adjoint matrix is several times more expensive
than the explicit calculation of right and left eigenvectors so that Lancaster's formula
is preferable to formulas requiring the adjoint matrix. This conclusion is also sup-
ported by sample computations[30]. In addition, although eq. (13) was used satis-
factorily for small problems[31,32], numerical difficulties were reported for

reasonably large problems[33]. Woodcock's formula for the second derivative of the
eigenvalue requires a partial derivative of the adjoint matrix and this is so compli-
cated that Woodcock himself recommends the finite difference method. Formulas

due to Morgan and Woodcock are not therefore considered in the following.

181



To obtain the second derivatives of eigenvalues, the first derivatives of left and

right eigenvectors are calculated either implicitly[9,11,23] or explicitly[I,8,12,34,35].
Since the eigenvalues are assumed to be distinct, the first derivatives of eigenvectors
can be expressed as

n n
U(k) = T, CkicLU('1") and v(k) = _ dk;(_v ('i) (16)

'_ j=l _ ,e. j=l J

Rogers[36] obtained the coefficients Ckj(_

v(J)TA, _u (k)
k¢j

ckJ _  U))vO)ruU)

v(kIrA, _u O)

dkj _ (t'(k) _ t'U)) vU)ru('i) k #=j

and dkj a as

(17)

(18)

It can be observed that

v(k)mu(k) (19)

dkj _ = _ Cjk_. V(J)Tu(J")

Reddy[37] derived an equivalent expression for the response derivative by casting
the derivative as the solution of a forced response problem for the same system.

Note that, in view of eq. (10), the coefficients Ckk_ and dkk(_ in eq. (16) are arbitrary
and depend on the normalization of the eigenvectors. For example, if eq. (7) is used
to normalize the right eigenvectors, then

n UmU) (20)Ckkc_ =- _ Ckj(_
j=l
j_k

and if eq. (6) is used to normalized the left eigenvectors, then

dkk a = -- Ckk(] (21)

It has been proposed[38,39] that the eigenvector derivative be approximated by
using less than the full set of eigenvectors in the expansion of eq. (16) so that the
evaluation of eigenvector derivative by Adjoint Method could become cheaper. This
variant of Adjoint Method has received mixed reports in the literature[22,38]. The
quality of such an approximation is difficult to assess beforehand and the selection
of eigenvectors to be retained in the expansion is problem dependent. It has not
been considered in this work because a meaningful comparison with other methods
cannot easily be made. However, this consideration should not be ignored while

implementing the sensitivity calculations for particular problems.

The expressions for the second derivatives of eigenvalues were obtained by

Plaut and Huseyin[35]. For the sake of simplicity in expressions, let us assume,
without loss of generality, that the left eigenvectors are normalized as in eq. (6).
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Plaut and Huseyin[35] obtained the second derivatives of eigenvalues with respect

to uncorrelated parameters p_ and P13as

_(k),ctJ_= v(k)TA, a_U (k) -t- v(k)TA, au(k),13 + V(k_TA, , _U (k) (22)

which can be equivalently written, without involving the derivative of the left
eigenvector, as

= u(k) + v(k)r(A, - d)u! + v(k)r(A

For a diagonal second derivative, eq.(22) is simplified to

u (k) (24)_(k),_u = v(k)TA, ttau(k) + 2v(k)TA, a ,

Eq. (22) can be rewritten using eqs. (17) and (18) as

n (_(k)_.!k)j3 = v(k)TA aj3u(k) + ,T_, - _,(J))(Ckjczdkj_ + Ckj_dkj_)
' j=l

j=_ k

(25)

Crossley and Porter[I,40] derived similar expressions for derivatives with re-
spect to the elements of the matrix. Expressions for N-th order diagonal derivatives
were derived by Elrazaz and Sinha[5].

In calculating the derivatives using eqs. (11), (16)-(25),

the first derivative of an eigenvalue requires the corresponding right and left
eigenvectors.

• the first derivative of an eigenvector requires all the left and right eigenvectors.

the second derivative of an eigenvalue requires the corresponding right and left
eigenvectors and their first derivatives.

Direct Methods

The second category comprises methods that evaluate the derivatives using only
the right eigenproblem. Direct Methods typically involve either the evaluation of the

characteristic polynomial or the solution of a system of linear simultaneous equations
without requiring all the left and right eigenvectors. Methods requiring the evalu-

ation of the characteristic polynomial and the derivative of the determinant[33,41] are
O(n 5) processes while other methods considered here are at most O(n 3) processes.

In addition, the determination of the characteristic polynomial is, in general, an un-
satisfactory process with respect to numerical stability, even when all the
eigenvalues are well-conditioned[42]. While numerically stable algorithms have been

proposed for evaluation of the characteristic polynomial[43], the computational ex-
pense still seems to be formidable. Hence, we do not consider these methods.
Methods requiring the solution of a system of equations have the particularly attrac-

tive feature that the coefficient matrix needs to be factored only once for each
eigenvalue regardless of the number of parameters and the order of the derivatives
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required. Thus, they are very useful in applications where higher order derivatives
are required.

The earliest method in this class is due to Garg[18] who obtained the first deriv-
atives of the eigenvalue and the eigenvector by solving two systems of (n + 1)
equations each in the real domain, without requiring any left eigenvectors. However,
his formulation involves several matrix multiplications. Rudisill[19] proposed a
scheme in which only the corresponding left and right eigenvectors are required to
calculate the first derivative of the eigenvalue and the eigenvector. This was refined
by Rudisill and Chu[20] to avoid calculating the left eigenvectors altogether. Solution
of a system of only (n + 1) equations is required (though in the complex domain) to
obtain the first derivatives of eigenvalue as well as eigenvector. Extension to higher

order derivatives is straightforward. Cardani and Mantegazza[21] proposed solution
methods of the same formulation for sparse matrices and extended it to the quadratic

eigenproblem.

One weakness that is common to all the above formulations that do not require

left eigenvectors[18-21] is that they rely on the normalization condition given by eq.
(4), which is unreliable for general eigenproblems as discussed earlier.

Nelson[22] circumvented this difficulty by using the normalizing conditions

v(k)Tu (k) = 1 and U(mk) = 1

However, the formulation of Rudisill and Chu is superior to Nelson's formulation
in that it does not require any left eigenvectors.

In this paper, we propose a variation of the Rudisill and Chu formulation which
does not rely on the questionable normalizing condition of eq. (4) and at the same
time requires no left eigenvectors.

Differentiating eq. (1), we get

= _,(k)u(k) + _,(k)u(k) (26)AU!_ + A, au (k) ,_ ,a

which can be rewritten in partitioned matrix form as

rA - -u(k)-I = - A,, u(k) (27)
,(Z

Now, we impose the normalizing condition of eq. (7).
yields,

Differentiation of eq. (7)

(k) = 0 (28)
Um,

Because of eq. (28), the m-th column of the coefficient matrix in eq. (27) can be

deleted. Eq. (28) also reduces the number of unknowns by one so that eq. (27) is now
a system of n equations in n unknowns. Eq. (27) is rewritten as

By 1 = r (29)
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where

B = [A - ;_(k)l I --u(k)]m-th column deleted

(u(k) ),_Yl = X(k)
, _ with m-th element deleted

r = - A (k)
,6[ u (30)

To get second derivatives, differentiate (27) with respect to PJ3and get,

_ u(k) t (k)_u (k)(A - _,(k)l)u!_13 u(k)_',_13 = -- A, aJ3 - (A,a - ,a) ,13

-
or, in partitioned matrix form,

u(k)^ )[A--l.(k)ll --u (k)] '_P = - A, al_ ,_

_ _(k)pu(k)- (A, 13 ,13 I ,_

Following the same reasoning as before, eq. (32) is written as

By 2 = s

where

" u(k) )Y2 = "t _(k)
i,._., aJ3 with m-th element deleted

(31)

(32)

(33)

= -- _.(k)pu(k) (A - _.(k)l_u(k) (34)S -- A, aj3u(k) (A, _ - , a J , 13 - ,13 ,13 J ,

Note that, if _.(k) is a simple eigenvalue of A and if u_) =_ 0, then the matrix A is
of rank (n - 1) and the m-th column that is deleted is linearly dependent on the other
columns. Hence the matrix B is non-singular. The matrix B will also be well-
conditioned if u_) is the largest component in the eigenvector u(k) and the matrix A

is itself not ill-conditioned. The vectors Yl and Y2 can be obtained by standard sol-
ution methods. If the matrix A is banded or if the derivatives of both right and left
eigenvectors are required, it may be more efficient to use a partitioning scheme as
described in the appendix.

In summary, we note that, in calculating derivatives by Direct Method,

• left eigenvectors are not used.

a complete solution of the eigenvalue problem is not required, if the derivatives
of only a few of the eigenvalues and eigenvectors are sought. This is in contrast
to the Adjoint Method which requires all the left and right eigenvectors to cal-
culate the first derivative of any eigenvector.
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calculation of any derivative requires the solution of a system of linear

equations.

only one matrix factorization needs to be performed for all orders of derivatives
of an eigenvalue and its corresponding right and left eigenvectors.

Iterative Methods

Andrew[44] proposed an iterative algorithm to calculate the first derivatives of

eigenvalues and eigenvectors. This algorithm is a refined and generalized version
of the iterative scheme developed by Rudisill and Chu[20]. Except for the dominant

eigenvalue, the convergence of this algorithm seems to be very much dependent on
the choice of the initial values for the derivatives. To be efficient for non-Hermitian

matrices, this iterative method requires a complex eigenvalue shifting strategy which

is not easy to implement. Hence this method is not considered.

Relative Computational Cost

In this section, we compare the efficiency of calculating the derivatives of

eigensystems as a function of the size of the matrix n, number of design parameters
m and number of eigenvalues of interest/.

To start with, let us consider the operation counts (flops) for the Adjoint Methods

given by eqs. (11),(16)-(25) and the Direct Methods given by eqs.(29)-(34). They are
summarized in Table 1. It should be noted that the operation counts represent an
estimate of the actual number of operations performed by a solution routine and in-

clude only the most significant terms. The actual number of operations will vary

slightly depending on programming details. The effect of the sparsity of the matrix

derivative A _ is modeled by the parameter _:, defined such that the the number of
operations in evaluating the product A, au is equal to Kn2(that is, K = 1 corresponds

to a full A, a).

The eigenvalues are calculated using the EISPACK subroutine package [45] by
first reducing the matrix to upper Hessenberg form using unitary similarity transf-
ormations and then applying the QR algorithm. The number of operations and CPU
time for calculating the eigenvalues are not counted in the following results as they

are not relevant in comparing the methods to calculate the derivatives.

The right eigenvectors are calculated by inverse iteration on the same upper

Hessenberg matrix used for calculating the eigenvalues and back transformation us-
ing standard subroutines in the package EISPACK. The corresponding operation
count is given in Table 1. For the calculation of left eigenvectors, it is important to
note that there is no need to repeat the process with the transposed matrix. The left

eigenvectors are obtained cheaply using forward substitution in place of backward
substitution in the inverse iteration process. There is also no need to repeat the
matrix factorization. A subroutine was written to calculate the right and left

eigenvectors in this manner and the corresponding operation count is given in Table
1.
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Table 1 gives the operation count of evaluating the individual steps. To obtain
the number of operations involved in evaluating the derivatives, we must add the
operation counts for all the steps required in the calculations. These counts are

given in the following discussion.

CPU Time Statistics

In the following tables, computational cost for the calculation of the first and
second derivatives of eigensystems are compared for matrices of order 20, 40 and
60. The CPU time statistics are obtained on the IBM 3084 computer using the

VS-FORTRAN compiler with no compiler optimization. The ratio of operation
count(OC) and CPU time for various operations is about 105 operations per CPU

second with a variablity of 27 percent.

The matrices are generated for the dynamic stability analysis of a compressor

stage rotor with mistuned blades. The geometric and structural parameters of the
rotor and formulation and method of analysis are the same as those of NASA Test
Rotor 12 described in reference[46] except that the number of blades and the
torsional frequencies are varied. The torsional frequency values are selected ran-

domly from a population of mean 1.0 and standard deviation 0.01. The standard de-
viations of the actual samples are slightly different.

Calculation of First Derivatives of Eigenvalues Only

Operation Count

Adjoint Method

Direct Method

It is clear from the operation count that the Adjoint Method, which is an O(n 2)

process, is superior to Direct Method, an O(n 3) process, for large n. The number of

design variables and the number of eigenvalues of interest have no bearing on this

conclusion. As the order of the matrix increases, the Direct Method becomes more

expensive. For example, for 5 design variables and 10 eigenvalues of interest, the

CPU time for the Direct Method is 2.3 times more expensive than for the Adjoint

Method for n -- 20, and for n=60, the ratio is 3.0.
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Calculation of First Derivatives of Eigenvalues and Eigenvectors

Operation Count

Adjoint Method 7.-.Ln3+ Imn2(E + 2)
2

Direct Method In---_-3+ Imn2(K + 1)
3

When the derivatives of both eigenvalues and right eigenvectors are required,
the choice of method is dependent on the values of /and m. When very few
eigenvalues are of interest, the Direct Method is cheaper. When many eigenvalues
are of interest, the Direct Method is more expensive than the Adjoint Method. How-
ever, this effect of the number of eigenvalues of interest is less significant when the
number of design variables is large. As the number of design variables increases,
the Direct Method becomes more competitive, even when all eigenvalues are of in-
terest. For a 60 x 60 full (K = 1) matrix, this is illustrated in Figure 1.

The operation count shows that the computation by Adjoint Method of
eigenvector derivative, which is necessary for the second derivative of eigenvalue,
is an O(n 3) process and is more expensive than the computation of the eigenvector
itself which is an O(n 2) process using the procedure described above. This fact is
significant as some authors have stated the opposite[2,3].
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Calculation of First and Second Derivatives of Eigenvalues only

Operation Count

Adjoint Method

Direct Method

Direct-Adjoint Method

-_-n 3 + (K: + 1)mn 3 +1 (2) n2K:

n 3
I--_- +1 (2)n2(3_ + 1)

n 3
I-_-- +1 (2) n2_ + Imn2(2K + 1)

The Direct-Adjoint Method denotes the calculation of the eigenvector derivatives
by the Direct Method and the eigenvalue derivatives by the Adjoint Method. The
third term in the operation count for the Direct-Adjoint Method is significant only
when m is small. From the operation count, it is seen that the Direct-Adjoint Method
is always cheaper than the Direct Method. Hence, the choice is between the Adjoint
Method and the Direct-Adjoint Method. Here, considerations similar to those of the
last section hold and the choice of method depends on the values of / and m. When
few eigenvalues are of interest, the Direct-Adjoint Method is cheaper. When many
eigenvalues are of interest, the Adjoint Method is superior. But this advantage of
Adjoint Method diminishes as the number of design variables increases. This is
again illustrated for a 60 x 60 full matrix (K = 1) in Figure 2.

Concluding Remarks

The normalization of the eigenvector needs to be properly related to its deriva-
tive. In practice, this means that the derivative of the eigenvector is to be normalized
before it is used, to conform to the normalization of the eigenvector itself. When the
eigenvector is not normalized in a unique manner, its derivative cannot be evaluated.

Fixing one of the components of the eigenvector is the best normalizing condition for
computation of the derivative. The methods found in the literature are extended to
apply to eigenvectors normalized in this manner.

Various methods for calculation of derivatives of eigenvalues and eigenvectors
are surveyed and classified as Direct or Adjoint. Adjoint Methods use both the left

and the right eigenvectors whereas the Direct Methods use only the right
eigenvectors. Their relative efficiency is evaluated as a function of matrix size,
number of eigenvalues of interest and the number of design parameters. General
recommendations are made for the cases when (a) eigenvalue first derivatives are

required, (b) eigenvalue and eigenvector first derivatives are required, and (c)
eigenvalue second derivatives are required.
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When only eigenvalue first derivatives are required, the calculation of left

eigenvectors is worth the expense as the Adjoint Method is shown to be superior to
the Direct Method. When first derivatives of eigenvectors are also required, the de-
cision is dependent on the problem size, the number of design variables and the
number of eigenvalues of interest. When the first and second derivatives of
eigenvalues are required, similar considerations hold. It is also shown that once the

first derivatives of eigenvectors are calculated, the second derivatives of eigenvalues
are calculated more efficiently by the Adjoint Method than by the Direct Method.
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Appendix

Modification of Direct Method for Banded Matrices

Equations (29) and (33) can be written as

(A - _,(k)l)m.th column deletedU!_ m-th row deleted - _,,_U = r (A1)

Let u(k) be normalized so that u_) = 1

Eq. (A1) is a system of n equations. Writing the m-th equation separately, we
have, if the superscript (k) is omitted for notational convenience,

Cx _ - 7.,_x = t (A2)

and

T --t, =r mamX, _ ,

where

C = (A - t.I)m_th row and column deleted

x, _ = u, (_ m-th row deleted

X = Um_th row deleted

t = rm.th row deleted

T
a m = m-th row of A with the m-th column deleted

From (A3),

t.,a = aTx, a -- rm

From (A2),

(A3)

(A4)
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X,_ = C--1(7,, _X -t- t) (A5)

Eliminating x, _, we have

tTbm -- r m
X =

, a 1 - xTbm
(A6)

where

bm = [C T]- 1am

Proceeding in a similar manner for the left eigenvector,

Y, _ = [C T]- 1(7,, _y + tl) (A7)

where

y, _ = v, _ m-th row deleted

Y = Vm-th row deleted

tl = (rl)m-th row deleted

r/being the appropriate right hand side.

Thus the following procedure can be used to obtain the derivatives 7,,

1. Form a LU decomposition of the matrix C.

2. Solve brn = [C T]- lam by forward substitution.

3. Calculate 7,, a from (A6).

4. Calculate x, a from (A5) by backward substitution.

5. Expand x, a to u, _ setting urn, _ = 0.

If the derivatives v_
steps are needed.

and u

of the left eigenvectors are also required, only three further

6. Calculate y, a from (A7) by forward substitution.

7. Expand y, _ to v, ¢ setting Vm, a = O.

. Normalize v _ appropriately depending on the normalization of v. For example,
to obtain the derivative of the left eigenvector that satisfies the normalization

condition of eq. (6), subtract (vTu, a + vTa u)v •

The matrix C needs to be factored only once. Also, the matrix C retains the

bandedness characteristics of the original matrix A. Furthermore, higher derivatives
can be obtained by merely substituting an appropriate right hand side vector, r.
However, higher order derivatives can suffer in accuracy because of accumulated
round-off error.
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The conditioning of matrix C needs some comment. Note that C is obtained from

the singular matrix (A - t.(k)l) by deleting both the row and column corresponding to
index m. Hence, for matrix C to be non-singular, one must make sure that the m-th
row is linearly dependent on the other rows as well as that the m-th column is line-

arly dependent on the other columns. In other words, C is non-singular iff
u_) _ 0 and v_) =/=0. If v_) is very small compared to the largest element in v(k),

steps 2 and 4 in the above procedure will give inaccurate results even if u_) is the
largest element in u(k). In general, it is not possible to make a good choice for m
without the knowledge of the left eigenvector. Since the calculation of left

eigenvector by forward substitution is cheap, it is suggested that the left eigenvector
be calculated and the index m be chosen as in eq.(9). This is the same criterion used
by Nelson[22] and will assure as well-conditioned a matrix (3 as possible.
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Table 1, Operation Counts

Eigenvectors

Operation

Evaluation of right eigenvectors

Evaluation of left eigenvectors

Operation Count

1(2n 2)

1(3n 2)

Adjoint Methods

Operation

Evaluation of eq. (11)
Evaluation of eqs. (16),(17),(18)

Evaluation of eq. (25)

Operation Count

Irnn2_

Imn2(K + 2)

/(2) n21_

Direct Methods

Operation

LU decomposition of matrix B
Formulation and solution of eq.(29)

Formulation and solution of eq.(33)

Operation Count

I(n3/3)
Imn2(K + 1)

I (2)n2(3K: + 1)
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Figure 1.
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STRUCTURAL SYSTEMS WITH REPEATED FREQUENCIES

I.U. 0jalvo

University of Bridgeport

Bridgeport, Conn.

ABSTRACT

Repeated or closely packed modal frequencies are common physical

occurrences for vibrating structures which are complex or possess

multi-planes of symmetry. The computation of the sensitivity to

structural modifications for these frequencies and mode shapes is

made difficult by the fact that the mode shapes are not unique, since

any linear combination of eigenvectors corresponding to a repeated
eigenvalue is also an eigenvector.

This paper extends the work of Chen and Pan [i], who used modal

expansion techniques for accommodating the sensitivity analysis of

structures with repeated eigenvalues. Starting with a discussion of

the physical significance of sensitivity analysis for repeated

frequency modes, the paper presents a derivation of the governing

equations for the derivatives of a repeated eigenvalue. This is

followed with a small example to illustrate the results. An efficient

computation procedure, based upon an expansion of Nelson's ideas [2]

for large banded systems, is then proposed for systems with repeated
or closely spaced eigenvalues.
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IMPORTANCEOF THE PROBLEM

The importance of obtaining gradients for eigenvalue problems
stems from the fact that gradients, or derivatives with respect to
system parameters, represent solution sensitivities. A knowledge of
these sensitivities permits efficient design modifications, yields
insight into the reasons for discrepancies between structural analyses
and dynamic tests, and suggests model changes to improve correlations.

KNOWLEDGE OF GRADIENTS:

YIELDS INSIGHT RE, PARAMETER SENSITIVITIES

PERMITS EFFICIENT DESIGN MODIFICATIONS

UNDERSTAND TEST/ANALYSIS DISCREPANCIES

SUGGESTS MODEL CHANGES TO IMPROVE CORRELATION
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WHEN DO REPEATED FREQUENCIES OCCUR?

While a procedure for obtaining gradients efficiently was

presented a decade ago by Nelson [2], the problems associated with

repeated roots have not been adequately addressed.

The problem of repeated frequencies, or identical frequencies

with different mode shapes, occurs in many physical situations. The

most common circumstances under which multiple eigenvalues occur in

engineering are cases where system symmetry exists, such as structures

with two or more planes of reflective or cyclic symmetry (see Figure

i) or axis symmetry (see Figure 2).

It is also possible for repeated or closely spaced eigenvalues

to occur when physical symmetry is not present, such as with classical

wing flutter when the first bending and twisting frequencies coalesce.

COINCIDENTAL PARAMETERS (E,G, WING TWIST/BENDING FLUTTER)

SYMMETRY: REFLECTIVE, CYCLIC, AXISYMMETRY

K

L-

JJ

t

SYMMETRICALLY SUPPORTED MASS
RIGHT CIRCULAR CYLINDRICAL SHELL
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TECHNICAL BACKGROUND

Assume [A] and [B] are symmetric n x n matrices and A[
repeated eigenvalue with m+l distinct orthogonal eigenvectors.
[Z _ ] is also an eigenvector corresponding to _ where_n

and l I

[X] - I x. x
L I

is a

Then

SYMMETRIC EIGENVALUE PROBLEM

ORTHONORMALI ZATI ON

MULTIPLE EIGENVALUE _i REPEATS M + i TIMES

CORRESPONDING EIGENVECTORS

NONUNIQUENESS OF EIGENVECTORS

I×,.},{×_+,},....,I×_+MI
M

{z,}:j_
i=0

=-- £ _+I ..... X l+ M
I
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FRICTIONLESS PARTICLE IN A SHALLOWELLIPTIC DISH
PHYSICAL INTERPRETATION

A simple physical interpretation of repeated eigenvalues was
presented by Crandall [3 ] in which he considered a shallow elliptical
bowl in which a frictionless mass particle is allowed to slide in the
bottom of the bowl (left figure). The eigenvalue problem for this
system consists in determining the paths and frequencies of
back-and-forth motion in which each motion is repeated on the same
path. The natural mode solution is obviously along the major and
minor axes of the ellipse.

Next imagine that the elliptical bowl is gradually transformed
into a spherical bowl (right figure). The eigenvalues will approach
one another and any straight path, through the bottom of the bowl, is
equally a natural mode. Thus, when m+l eigenvalues coalesce, there is
an infinity of mode shapes composed of a linear combination of the m+l
dependent, but somewhat arbitrary, basis modes.

Minor Axis

Mode Path

Elliptic Dish - Unique Modes

Any Diametral Path Is A
N atural Mode

@
Spherical Dish - N on un ique Modes

Natural Frequencies Coalesce A s D ish Becomes Spherical

Distinct Mode Shapes V an ish A s Ellipticity D isappears

Crandall (ref. 3)
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MODALGRADIENT EQUATIONSPRESENTAN ENIGMA

The modal sensitivity equations for a small change in a typical
parameter, R, upon which certain matrix elements of [A] and [B] depend,
are well known and summarized below. The problems are that they
cannot be easily interpreted for the repeated eigenvalue problem since
Ix _ ] is not unique, and matrix ([A] - _ [B]) is not of order n-I
but lower (i.e., n-(m+l)) depending on the multiplicity, m, of
eigenva]ue _ •

!

( )_ 3( )

_R

Xi {}= XZ T ( [A] - I_[B] ) x(.

([A]- ,_E[B])

= b
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INTERPRETATION PROBLEMS

There are ambiguities associated with the gradient equations
since{XL I is not unique and _i depends upon which{XE] is chosen. In
addition, the rank of ( [A] _- A; [B] ) is not n-l, but lower.
Therefore, inclusion of the derivative of the normalization condition
alone is not sufficient to uniquely determine_X'{.

WHICH {XL} SHOULD BE USED? Is{X-_DIFFERENTIABLEIN R?

USE OF DIFFERENT{Xz}WILL YIELD DIFFERENT RESULTS,

'}RANK OF ([A] A:[B])IS Too Low TO UNIQUELY DETERMINE IXz ,

WHICH ADDITIONAL EQUATIONS SHOULD BE USED?
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REPEATEDFREQUENCYSENSITIVITY EQUATION

To determine how the eigenvectors are perturbed by the
infinitesimal change in R, we postulate an aribtrary vector IZ- _
which is linearly composed of eli the [xF] (_ = _", _" +i, •.t ,

L'+m) and premultiply the eigenvector gradient equations by the

transpose of all the eigenvectors corresponding to At •

This yields an auxiliary matrix eigenvalue equation in __ ,
which is of order m+l, the solution of which defines the specltic

eigenvectors, through the eigenvectors [ _ ( 4 ) _, affected by the

change in parameter R.

M

LET{Z_}Z _.,{
J=0

x,+,l_JI-I

t

[x]T <[A] - A_.[B] > - [o]

I_IT IF__z,1 -/o I <->_;/o_l- >,;/o,/

[D] =-[3_'1 T ( [A]

(M÷I) _(M*I)

'-X,:[B] ' >[::=:]
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PHYSICAL INTERPRETATION

Solution of the (m+l) eigenvalues and eigenvectors of the[D]

matrix will yield the m+l gradients of AS as well as the eigenvectors

{Z_ to which they correspond. The figure below displays how the
ezgenvalues coalesce for a particular value of the parameter R and

also shows how they correspond to different gradients. In general,

there will be as many derivatives as there are curves intersecting at

a particular parameter value R.

M+I

SOLUTIONS

A

A •

L.

i

!

NOTE: THERE ARE Two >,E.

I
I

P,,
WHERE A Z COALESCES WITH '_z÷i

!

DETERMINATION OF I_ AND CORRESPONDING I<x_

UNIQUELY DETERMINES MODE FOR GRADIENT SOUGHT
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PROPOSED SOLUTION PROCEDURE: OVERVIEW

The solution procedure proposed is an extended version of

Nelson's method for non-repeated roots. The method maintains the

original matrix bandwidth while eliminating m+l equation redundancies

in the original eigenvalue system.

The equations to be eliminated are determined by examining each

eigenvector which corresponds to the eigenvalue whose gradients are

desired, and establishing which elements are the maximum for each

vector. These then correspond to which m+l rows of ([A] - Ai [B])

should be considered as redundant. If the maximum elements of any two

eigenvectors correspond to the same row, then it is necessary to go to

the next smaller element until a set of m+l equations for removal is

obtained.

Rather than eliminate these rows and upset the system

bandedness, we propose to extend Nelson's ideas by zeroing out the

corresponding element of IFj I and then solve for IV_ ].

BASED UPON MAXIMUM ELEMENTS oF{Z_.}j{Z L+I}'""{Z L+M}

ZERO-OUTM+I RowsAND COLUMNSOF ( [A] - A_[B] )

ZERO-OUT M+Z ELEMENTS FROM {Fj} , j = _, Z+i ,,,,,_+M

SOLVE', ( [A]- ALIBI ) {Vi } = { F;}

NOTE: ( [A] - X_[B]) HAS SAME BANDWIDTH AS ( [A] - A_[B])
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SOLUTION PROCEDURE: AUGMENTATIONOF EQUATION

The process described on the previous page yields a solution
vector [Vj I with m+l zeroes. To this we append the m+l eigenvectors
[Z_ ] with appropriate constants C 3_. This combination is then
substituted into the derivatives of the m+l orthonormalization
equations and the (m) additional optional equations to uniquely
determine the m+l constants Cj_ .

INTRODUCE M+I ADDITIONAL EQUATIONS:

!

<{Z_ }T[B] {ZE}- Q_E]) = 0

L ,] =L- Z+l, E+2,..., Z+m

L'+rl_

LET {Z; '} ={Vi} +_ Cj,_ {Zx}
/= Z

AND {zjIT [ B] {ZI_ } = {ZKFEB] {Zj'} I,,,j (OPTIONAL)

THEN
CI,,j =-½ {ZF,}T[ B]{Z3} -{Z.I}T[ B ] {VK}
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SIMPLE EXAMPLE: BASIC DESCRIPTION

As a very simple application of this procedure consider a

weightless straight bar of length L with end masses supported by

linear springs. As the spring stiffnesses and masses approach one

another, so do the two system frequencies. Thus, depending upon the

method by which the normal modes are obtained, the mode shapes may

vary. For the mode shapes presented below, either both masses vibrate

simultaneously up and down together [Xl_, or in opposition, Ix2].

Ilkk]
k2 k 2 eL

FOR k I : k 2 - k ,

i-//f'/ / // /.- - rl

_I, _ [ ml + m2 -m2

-m m2

m I : m2 -- m

X1

I Yl

= k2 = k
m

):I
,_=-

Ix21L02 2

2O8



SIMPLE EXAMPLE: NORMAL MODES

If we follow the procedure outlined earlier, and compute the

system frequency gradients with respect to changes in mg, we obtain

normal modes [Z I] and [Z ]. These modes are associated _ith motions
for which only m I moves, _nd motions for which only m 2 moves.

, _C )
( ) =

M2
In]{:'}: _'{=_1

2Mz 11_I-11  111:
k

AND ------'2---" _) MM

,1,1} 1,ll 1 t1_
= c_ (z)

1 xl _2,11t×2} ,_ 1 Hz
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SIMPLE EXAMPLE: EIGENVECTORGRADIENTS

Following the computation procedure outlined
eigenvector gradients, [Z' ] and IZ' ], for changes in1 2

vector and the value of [Z2] / _ m 2 shown below.

earlier, the

m 2 are the null

ZI '_ I += Ci IZi} Ci2 (Z21 {o} I= ,, I,E, El} NOT AFFECTED BY M 2 CHANGE
0

/Z2'} = C211ZI}+ C221Z2} = I-
2M 12

M2 O
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USE CAUTION WHENWORKINGWITH THE TOTAL DIFFERENTIAL

d i%

THE TOTAL DIFFERENTIAL MAY NOT EXIST EVEN THOUGH THE PARTIAL DERIVATIVES Do,
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CONCLUSIONS

The coordinate system and mode shapes initially selected for

this example gave little physical insight regarding how the initial

system would decompose due to a change in m Yet, this example

yields a simple demonstration of the insight to_e gained by following

the proposed procedure. Thus, it is seen that the proposed

mathematical procedure automatically yields m+l distinct gradients for

repeated frequencies and m+l distinct modes, without requiring user

dependence.

The computational efficiencies suggested by Nelson 3 have been

expanded. These include: maintaining system bandwidth and

consideration of only the m+l repeated root frequencies.

EIGENVALUE GRADIENTS FOR REPEATED FREQUENCIES

GENERALLY YIELD MULTIPLE DISTINCT VALUES

EFFICIENT COMPUTATION OF EIGENVECTOR GRADIENTS

FOR REPEATED FREQUENCIES IS POSSIBLE

I,E, BANDWIDTH MAY BE MAINTAINED

MODAL EXPANSION IS NOT NECESSARY

BUT, MUST INTRODUCE MODAL ORTHOGONALITY CONDITIONS IN

ADDITION TO NORMALIZATION CONDITION

EXERCISE CAUTION WHEN USING A TOTAL DIFFERENTIAL WHICH IS A COMBINATION OF

PARTIAL DERIVATIVES FOR REPEATED FREQUENCIES,
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ABSTRACT

A method is developed for sensitivity analysis and optimization of nodal

point locations in connection with vibration reduction. A straightforward

derivation of the expression for the derivative of nodal locations is given,

and the role of the derivative in assessing design trends is demonstrated.

An optimization process is developed which uses added lumped masses on the

structure as design variables to move the node to a preselected location;

for example, where low response amplitude is required or to a point which

makes the mode shape nearly orthogonal to the force distribution, thereby

minimizing the generalized force. The optimization formulation leads to

values for added masses that adjust a nodal location while minimizing the

total amount of added mass required to do so. As an example, the node of

the second mode of a cantilever box beam is relocated to coincide with the

centroid of a prescribed force distribution, thereby reducing the

generalized force substantially without adding excessive mass. A comparison

with an optimization formulation that directly minimizes the generalized

force indicates that nodal placement gives essentially a minimum generalized

force when the node is appropriately placed.

• ..,.:. ,_.,_ ...... _ b%At_K NOT F|LMEO
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INTRODUCTION

The current trend in engineering design of aircraft and spacecraft is
to incorporate in an integrated manner various design requirements and to do
so at an early stage in the design process (refs. I, 2). Incorporation of
vibration design requirements is one exampleof this. Work in this area is
ongoing in the Interdisciplinary Research Office at the Langley Research
Center, particularly for vibration reduction in rotorcraft.

In helicopter rotor blade and fuselage design, stringent requirements
on ride comfort, stability, fatigue life of structural components, and
stable locations for electronic equipment and weaponslead to design
constraints on vibration levels (refs. 3-5). Someof the methods previously
used to control structural vibration in rotor blades include pendulum
absorbers (ref. 6), active isolation devices (ref. 7), additional damping
(refs. 5, 8), vibration absorbers which create "anti-resonances" (refs. 9,
10), and tuning masses to place frequencies away from driving frequencies
(refs. 5, 11-14). Efforts to incorporate the above concepts for vibration
reduction in systematic optimization techniques are described in references
10, 15-19. References 20, 21 contain surveys of applications of
optimization methods for vibration control of helicopters.

The objectives of this paper are to develop and demonstrate the concept
of nodal point placement and develop a mathematical optimization procedure
based on this concept to reduce vibration. An important ingredient in the
optimization procedure is the derivative of the nodal point location with
respect to a design variable. This derivative quantifies the sensitivity of
a nodal location to a change in a design variable. The sensitivity
derivative of the nodal location is derived in this paper. The equation
involves the derivative of the vibration modewith respect to the design
variable and the slope of the modeshape at the nodal point and is easily
implemented in a vibration analysis program using available or easily
computedquantities. Analytical results are presented for the sensitivity
derivatives for a beammodel of a rotor blade and comparedwith finite
differences for an independent check. The sensitivity derivatives have been
employed in an optimization procedure for placing a node at a specified
location by varying the sizes of lumped masseswhile minimizing the sumof
these masses. Optimization results are shownfor placement of a node at a
prescribed location on the beammodel.

Recently, the concept of "modal shaping" has been proposed as a method
to reduce structural vibration, especially in helicopters (refs. 3, 4). In
this method, vibration modesof rotor blades are altered through structural
modification to make them nearly orthogonal to the air load distribution -
thus reducing the generalized (modal) force. This paper deals with the
concept of nodal point placement which is related to modal shaping and
consists of modifying the massdistribution of a structure to place the node
of a modeat a desirable location. Typical candidates for nodal point
placement are locations where low response amplitude is required such as
pilot or passenger seats, locations of sensitive electronic equipment,
weaponplatforms, or engine mounts. Nodal point placement also has the
potential for reducing overall response by placing a node at a strategic
location of a force distribution to reduce the generalized force.

216



MOTIVATIONFORDERIVATIVESOFNODALPOINTLOCATIONS

A method has been developed for calculating the sensitivity derivatives
of node locations (points of zero displacement on a modeshape). These
derivatives are used in optimization procedures to place nodes for the
purpose of reducing vibrations. There are two general cases of nodal
placement (figure I). The first case places a node at a point where low
response is desirable such as the pilot or passenger seat, the location of
sensitive electronics, or weaponplatforms, for example. The second case
places the node at a point to minimize the generalized force. By placing
the node at certain locations, the major componentsof the force vector are
cancelled out and, therefore, the generalized force is reduced. Two
possible candidates for placement of the node in this case are the point of
maximumforce or the centroid of the force. An example of the latter will
be shown. The derivatives of nodal locatiOns, besides being used in
optimization procedures to place nodes, provide valuable information about
the effect of a design change in moving the location of the node.

• Application of nodal placement

Points desirable for low response

• Pilot or passenger seat

• Location of sensitive electronics

• Weapon platform

T
Minimize generalized force, e F

• Design application

Tells which design variables are most effective in

changing nodal location

Figure I
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DERIVATIVESOFNODALPOINTLOCATIONS

The derivation of the analytical expression used to calculate the
derivatives of node point locations is developed for an arbitrary design
variable, v. The modal deflection normal to the length of a one-dimensional
structure is denoted u(x,v) and represented by the solid line in the sketch
of figure 2. The deflection, u and the nodal point location denoted by
x (v) are both functions of a design variable. Whenthe design variable is
n

perturbed, the deflection shape changes to the shape shownby the dashed
line. The derivative of the nodal location is obtained by expanding the
perturbed modein a Taylor series about the nominal nodal point. Neglecting
the higher order terms,

I I

u( xn
+ dx n ,v + ,x ,v n ,x ,v

n n

The term on the left side of the equation and the first term on the right

are deflections at the nodal points of the perturbed and nominal mode

shapes, respectively, which are zero. Since xn is a function of v, it

dx

n dv Therefore, from (I)
follows that dx n = --d-v-- "

_u dx n ,v xn ,vdv + x ,v dv = 0
xn ,v xn n

Noting that dv is arbitrary and solving for dx
n

(2)

/dv leads to the formula for

the nodal point derivative
dx

n =_ [ _u/_v ] (3)
dv _u/_x x ,v

n

The two ingredients in the formula are _u/_v, the derivative of the mode

shape at the nodal point and 3u/_x, the slope of the mode shape at the nodal

point. The value of _u/_x is obtained from the nominal mode shape; and the

value of 3u/_v is obtained by Nelson's method (ref. 22) which will be

described in the next figure.

_\ V

. /--u +'_v dv

X \
-: xn =-!_ \_

_ . _xn
Xn + c_v dv

im,-X

Figure 2
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DERIVATIVESOFEIGENVECTORS-NELSON'SMETHOD

A free-vibration problem with no damping is governed by equation (4) of
figure 3 where K is the stiffness matrix, M is the massmatrix, ¢ is the
eigenvector, and A is the eigenvalue (square of the circular frequency).
The eigenvector is normalized such that the generalized mass is unity (eq.
(5)). By taking the derivative of equation (4) with respect to a design
variable v, equation (6) is obtained. Because this equation is singular, a

a¢
direct solution for -_ is not possible. However, the general solution to

equation (6) is expressible in the form of equation (7) as the sum of a

complementary solution, ¢ and a particular solution, Q. The particular

solution is found by setting one component of the eigenvector derivative

equal to zero and deleting the corresponding row and column from equation

(6) and solving for the remaining components. The constant C is found by

taking the derivative of the normalization condition in equation (5) and

substituting equation (7) into the resulting expression.

oIK- :o
T

oO Me = I

(4)

(5)

• Take derivative of Eq. (4)

c_K O+ } c3M

• Solution:
c3v

-- Q + C(1)

oC is determined from derivative of Eq. (5)

20TM a(l) _ oT 6__MM.¢
_v 0v

1JOMmC = - oTMQ - -_- _ 0

(7)

*Ref. 22

Figure 3
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DERIVATIVES OF NODAL LOCATIONS FOR SPINNING STRUCTURES

For calculating derivatives of nodal locations of spinning structures

such as rotor blades, a modification of the previous development is

necessary. The basic expression for the nodal point derivative is

unaffected (see eq. (3)), and Nelson's method is still used to calculate the

eigenvector derivative. However, the details of Nelson's method when

applied to a spinning structure are different because the eigenvalue problem

has additional stiffness terms (refs. 23, 24). As shown in figure 4, the

new terms are KC, the centrifugal stiffness matrix and KD, the differential

stiffness matrix. Kccontains products of masses m and angular velocity _.

KD contains stresses associated with the extension of the spinning

structure. (Details may be found in refs. 23 and 24.) Presently, the

derivative of the stiffness matrix is calculated by finite differences, but

methods for calculating this derivative analytically are being investigated.

• Stiffness matrix for spinning structures

K = KE + KC + KD

• KE = elastic stiffness matrix

• KC : centrifugal stiffness matrix : (m, _)

• KD = differential stiffness matrix = KD(O)

• Compute i_(KE + KC + KD)/c_v by finite differences

• Plans are to develop derivative of KE + KC + KD analytically

Figure 4
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SENSITIVITYDERIVATIVETESTPROBLEM

The example problem used to test the sensitivity analysis is a
cantilever beamrepresentation of a rotor blade developed in reference 25
and shown in figure 5. The beamis 193 inches long and is modeled by ten
finite elements of eqUal length. The model contains both structural mass
and lumped (non-structural) masses. The beamhas a box cross section as
shownin the figure. Additional details of the model are given in reference
26. There are eight lumped massesat various locations along the length of
the beamand the values of the massesare the design variables. The
derivatives of the nodal location with respect to these lumped massesare
computedfor the second mode. The second modeis chosen because it is a
prime contributor to the vibrations transmitted from the rotor to the
fuselage (ref. 3).

@@@ ® @ @ @ @ @ @ Element numbers

2 3 4 5 6 7 8 9 10 11

Finite element model

Grid point numbers

Cross-sectional detail

• Compute derivatives of node location for second mode

• Design variables - masses at grid points

Figure 5
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RESULTS OF SENSITIVITY ANALYSIS

Derivatives of the nodal point location with respect to the lumped

masses for the second mode were calculated using equation (3). The

sensitivity analysis included the model with spin (_=425 rpm), as well as

without (g=0). For an independent check on the implementation of equation

(3), the derivatives were also calculated by forward finite differences with

a step size of .I percent. The sensitivity results are shown in figure 6.

The two methods generally agreed within one percent. Examination of the

table shows both positive and negative values of the derivatives. A

positive value indicates that an increase in the mass moves the nodal point

to the right of the nominal location and a negative value indicates that an

increase in mass moves the node to the left. The derivatives show, for

example, that changes in the masses at grid points 10 and 11 are the most

effective ways (per unit mass) to move the node. The derivatives for the

spinning model follow the same basic trends as the non-spinning model even

though the derivatives are somewhat different.

I dXn/dV (inch/Ibm)

Q : 0 f2 : 425 rpm
Finite Finite

Mass no. Analytical difference Analytical difference

3

4

6
7
8
9

10
11

-0. 028

-0. 088
-0.231
-0.236
-0. 166
-0. 004
0.309
O.828

-0. 028
-0. 088
-0. 230

-0.236
-0. 165
-0. 004
O.309
0.826

-. 050

-. 129
-.261
-.221
-. 096
• 062
.280

.778

-. 050

-. 129
-.261
-.221
-. 096
• 062
.280
.777

Figure 6
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OPTIMIZATIONTOPLACENODES

The optimization problem is to place the node at a desired location by
varying the magnitudes of lumpedmasseswhile minimizing the total lumped
mass. CONMIN,a general-purpose optimization program (ref. 27), is utilized.
The formulation of the problem consists of defining an objective function
(the quantity to be minimized); the constraints (limitations on the behavior
of the model); and the design variables (the parameters of the model to be
changed in order to find the optimum design). The optimizer requires
derivatives of both the objective function and the constraints. The
formulation for this problem, summarizedin figure 7, is as follows: The
objective function, f, is the sumof the lumped masses. The constraint, g,
which must be negative or zero for an acceptable design, expresses the
requirement that the nodal point x be placed within a distance 6 from an
desired location x . The design variables consist of the sizes of theo
lumpedmasses. Constraints on the largest and smallest acceptable values of
the design variables are optional. Thesevalues are arbitrarily set in this
case. The derivatives of the objective function with respect to the design
variables are all equal to 1.0 and the derivatives of the constraints are
equal to positive or negative values of the nodal point sensitivity
derivatives calculated from equation (3).

• Problem: Place node x within 6 of x
n o

• Objective function, f = _ Mi
i:1

• Constraint, g = I Xn - Xol - 6 < 0

• Design variables, v i= Mi

• Use CONMIN

by varying masses M.
I

• Derivatives of objective function: c_f/c3v. = 1.O
I

• Derivatives of constraints: c_glc_v.= +_c_x Ic3v.
I n I

Figure 7
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OPTIMIZATIONTESTPROBLEM

The modelused in the optimization procedure is shown in figure 8 and
is the samebeamstructure of figure 5. The node for the second modeis to
be placed within 6 = 1.0 inch of x =164 inches. The location x is

o o

chosen because it is the centroid of a representative air load distribution

given in reference 3 for a rotor blade. In reference 26, it is shown that

the centroid of a load distribution is a desirable location for the node.

The design variables are the masses at joints 9, 10, and 11 having initial

values of 5.21 ibm, 6.55 ibm, and 6.60 lbm, as given in reference 25 - a

total of 18.36 pounds. The initial location of the node is 154.7 inches.

The upper and lower bounds on the design variables are 50.0 and 0.5 ibm,

respectively.

M1 M2 M3

--- 193in "--

• Allowable distance:

• Design variables:

Desired node location:

6=

Xo= 164.0 in.

1.0 in.

M1 M2 M3

• Upper bounds on design variables:

• lower bounds on design variables:

50 Ib

0.5 Ib

Figure 8
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CONVERGENCEOFOPTIMIZATIONPROCEDUREFORNODALLOCATION

Initially, the constraint is not satisfied since the node is nine
inches from the desired location (instead of one inch). The optimization
history is shownin figure 9. The optimizer initially adds massto bring
the nodal point to within one inch of the desired location. After ten
cycles, the constraint is satisfied, but the mass is increased to about 36
lbm. For the remainder of the cycles, the optimizer concentrates on
minimizing the total mass by shifting mass amongthe three locations,
finally reaching the optimum design with a massof 24.45 ibm.

Ix n - Xo] (in.) 5

Mi (Ibm)

30

20

I0

0 I I I I i
5 I0 15 20 25

Cycle

Constraint - Nodal location

10 Objective function- sum of masses

0 I I I I I
5 10 15 20 25

Cycle

=1

Figure 9
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INITIAL ANDFINALDESIGNFORNODALPOINTOPTIMIZATION

The optimization procedure converged to the final design shownin
figure 10 in which the massesare 0.5 lbm, 3.70 lbm, and 20.25 ibm, for a
total of 24.45 ibm, and the nodal point is located at 163 inches.
Basically, masswas shifted from the two inboard locations to the tip where
mass is most effective in moving the nodal point. For example, the massat
grid point 9 is reduced from 5.21 ibs to 0.5 lbs; while the tip mass is
increased from 6.6 Ibs to 20.25 ibs. Excessive addition of mass is avoided
(only 6 additional pounds were needed) because of the effectiveness of
relocating mass to the tip.

x = i(:¢,.0 in.
0

6= 1.0 in.

M1 (Ibm)

M2 (Ibm)

M3 (Ibm)

MTOT (Ibm)

Nodal

location
x (in.)

n

Initial

5.21

6.55

6. 60

18.36

154.7

Final

0.50

3.70

20. 25

24.45

163.0

Figure I0
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GENERALIZEDFORCESTUDY

One of the potential applications of nodal point placement is the
reduction of overall vibration response by generalized force minimization.
A study is performed in which the generalized force for the second modeis
calculated using the force distribution F, shownin figure 11. This
generalized force is ¢2T F where ¢2 is the modeshape from the final design

based on the nodal point placement optimization. The force distribution in
figure 11 is taken from reference 3 as representative of the air loading on
a rotor blade and is adjusted so that the centroid is near the location of
the nodal point; i.e., (164 ± I) inches. Locating the node at the centroid
results in a low value fOr the generalized force (ref. 26). To assess how
well nodal placement reduces generalized force, the generalized force from
node placement optimization is comparedwith the value obtained whenthe
generalized force is directly minimized (ref. 26).

Centroid of distribution at x/L = .85 (164 inches)

Air load
(Ib/in.)

B

0
I ""_1 , I i I

.2 .4 .6 .8

Nondimensional distance along blade, x/L

I

1.0

Figure ii
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DESIGNCHARACTERISTICSFROMNODALPOINTOPTIMIZATION

Figure 12 contains design variables, total mass, generalized force, and
nodal point locations for three designs: the initial design, the final
design from nodal placement, and the final design from the direct
minimization of the generalized force (ref. 26). The nodal placement
procedure is very effective in minimizing the generalized force - giving
10.8 ibf, comparedto 10.0 ibf from the direct method when both were started
at a design with a generalized force of 20.8 ibf. The direct minimization
procedure, while not dealing directly withthe nodal location, nevertheless
places the node essentially at the samepoint as the nodal placement design:
163.8 inches versus 163.0 inches.

Nodal Direct

Initial placement minimization

Generalized force (lbf) 20.8 10.8 10.0

Nodal location x (inch) 154.70 163.0 163.8
n

M1 (lbm) 5.21 0.50 0.50

M2 (lbm) 6.55 3.70 1.75

6o60 20. 25 22.20

18.36 24.45 24.45

M3 (Ibm)

MTOT (Ibm)

Figure 12
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CONCLUDINGREMARKS

This paper has described sensitivity analysis and optimization methods
for adjusting modeshape nodal point locations with application to vibration
reduction. The paper begins with a derivation of an expression for the
derivative of the nodal location with respect to a design variable.
Sensitivity analyses were performed on a demonstration problem which
consisted of a box beammodel of a helicopter rotor blade. In these
analyses, the derivatives of the nodal location for the second modewith
respect to the magnitudes of lumpedmasseson the beamwere calculated. It
was shown that these derivatives gave useful information about the effect of
the masseson the nodal location and indicated which masseswere most
effective in moving the nodal point. Next, the paper described an
optimization procedure to place a nOdeat a prescribed location by adjusting
the magnitudes of lumped masseswhile minimizing the sumof these masses. A
general-purpose optimization program wasused and the nodal point
derivatives were a key ingredient in the procedure. This optimization
procedure was demonstrated in an examplewhere thenodal point for the
second modeof a cantilever beammodel of a rotor blade was placed at a
location close to the centroid of a force distribution. The procedure was
successful in moving the node to the desired location requiring only six
additional pounds of lumped masson a 193-inch beamthat weighed 117 pounds.

Finally, to demonstrate the potential for nodal placement to reduce
vibration, the generalized force for the second modewas calculated and
comparedto the minimumgeneralized force obtained by a separate
optimization procedure. It was found that the nodal placement procedure
gave a generalized force which was very close to the minimum. The results
in this paper suggest that adjusting the modeshapes of structures by
relocating nodal points has potential for reducing both overall and local
response levels in vibrating structures.
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ON COMPUTING EIGENSOLUTION SENSITIVITY DATA USING FREE

VIBRATION SOLUTIONS

B. P. Wang

Department of Mechanical Engineering

The University of Texas at Arlington

Arlington, Texas

SUMMARY

A simplified method of computing eigensolution sensitivity derivatives in

structural dynamics is developed in this paper. It is shown that if the elements

of stiffness and mass matrices associated with a design variable are homogeneous

functions of that design variable, then eigenvalue derivatives can be computed from

element strain and kinetic energies. Furthermore, if cross-mode energies are known,

eigensolution derivatives of modified systems can be computed approximately using

assume mode reanalysis formulation. A ten bar truss example is used to illustrate

the present formulations.

INTRODUCTION

The usefulness of eigensolution sensitivity derivatives in structural dynamics

research is well known. The sensitivity data can be used for approximate

reanalysis, analytical model improvement, assessment of design trend as well as

structural optimization with eigenvalue constraints. When applied to larger discrete

structural models, these applications typically require long and expensive computer

runs and usually the predominate contributor to the computing time was the

calculation of derivatives. Thus efficient eigensolution sensitivity analysis

procedures would be very useful in structural dynamic research. It is the purpose

of this paper to develop, under certain conditions, efficient eigensolution analysis

procedures using free vibration data.

The equations for computing derivatives of eigenvalues and eigenvectors for free

vibration of undamped structures were known for a long time. Only recently have

these methods been implemented in some general-purpose finite-element programs. In

this paper, a simple method is developed which can be used to compute the eigenvalue

derivatives for a large class of problems by exploiting the similarity between the

equations for eigenvalue derivatives and element strain and kinetic energies.

Furthermore, if the cross-mode element energy data are available, the approximate

eigenvector derivatives can also be computed using a truncated modal expansion

expression. The approximate second derivatives of eigenvalues can then be computed.

Additionally, with the cross-mode strain energy data, the eigenvalue derivatives of a

modified structure can be computed using assumed mode reanalysis formulation.

Numerical examples will be presented to illustrate the various formulations.
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EIGENSOLUTIONSENSITIVITYIN STRUCTURALDYNAMICS

The general problem is to compute the rate of change (or derivatives) of
eignevalues and eigenvectors with respect to design variables for the following
generalized eigenvalue problem in structural dynamics.

K¢=AM¢ (1)

Much research has addressed this problem in the past two decades. A

comprehensive survey of literature can be found in a recent paper by Adelman and

Haftka []]. The equations for first order eigenvalue and eigenvector derivatives

as well as second order eigenvalue derivatives are summarized below:

Eigenvalue Derivative:

aA£ T 8K T aM

r r r

(2)

Eigenvector Derivative:

a¢£ n

a-x- = _ A£ij Cj
r j=l

(3)

where for £ _ j

T 8Z£

ARr j = Cj _ ¢_/(_2-_j)
r

(4)

and

ZR = K - h£M

1 T aM

= - i a--f-
r

(5)

(6)

Second Derivative of Eigenvalues:

a2k£ T aZ£ 8¢1 aZ l 8¢i.

8x 8x - Y£ + ¢2 (Sxx 8x + 8x _- )
r s r s s r

(7)

where

.T. a2K a2M aA£ aM aA£ aM

Y£ = _£t_-xS-xx k£ ax ax ax ax ax ax ) CR
r s r s s r r s

(8)

Note that in the above equations, the mode shapes are normalized to unit generalized

mass, i.e.

T
cl'£ M¢£ = 1.0
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For the eigenvector derivatives, if less than full modes are used, Eq. (2) is an

approximate expression. These will lead to approximate second order derivatives of

eigenvalues.

The above equations have been developed in the literature for some time. For

example, Equations (2) and (3) can be found in Fox and Kapoor [2] and Eq. (7) was

reported by Miura and Schmit [3]. It should be noted in passing that there are some

recently developed algebraic methods [4-5] which can be used to compute eigenvector

derivatives without using modal expansions.

The difficulty of applying the aforementioned equations appears to be the cal-

culation of derivatives of stiffness and mass matrices with respect to design vari-

ables. In the next section it will be shown that under certain assumptions, we can

circumvent the calculation of _K/_x i and _M/_x i in implementing these above equations.

SIMPLIFYING ASSUMPTIONS

In general, the system stiffness and mass matrices in Eq. (I) can be written as

ND

K=K + _ K. (9)
c 1

i=l

ND

M = M + Z M. (lO)
c 1

i=l

where

K = contribution to stiffness matrix due to structural elements that are to
c

remain constant during the design process.

M = contribution to mass matrix due to the masses of the unchanged elements as
C

well as nonstructural masses.

Ki,M i = contributions to stiffness and mass matrices respectively due to elements
controlled by design variable x..

1

To develop simplified efficient methods for eigensolution sensitivity analysis,

the elements of the matrices K. and M. are assumed to be homogeneous functions of
1 . 1

design variables. That is the matrzces K. and M. have the form
1 1

)_i *K. = K. (11)i (xi i

Yi *
M. = ) Mi (xi i

where K. and M. are constant matrices.
1 1

parameters

(12)

Furthermore, define non-dimensional design
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xi Pi
i (xi0)

(13)

(14)

Then

or

K. = (x i) K. = (x_ 0) (xi0) K.1 1 1

K = u. (15)i i Ki0

Similarly,

M = 8. (16)i i Mi0

where Ki0 and Mi0 are stiffness and mass matrices due to design variable x. at its
i

nominal value xi0.

Based on the above assumptions, the derivatives of stiffness and mass matrices

with respective to design variables can be computed readily:

8K. Be.
8K i i

8x. - 8x. - 8x. Ki0
1 1 1

or

8K. _i

8x. - x. Ki0
1 1

(17)

Similarly, we can derive

8M _i

8x. = _. Hi0
i 1

(18)

It should be noted that at the nominal design, _. = _. = I.
1 1

tions, the eigenvalue derivatives can he computed readily.

With these simplifica-

RATE OF CHANGE OF EIGENVALUES

Using (17) and (18) with a = _i = I, the eigenvalue derivative, eq. (2) becomes

8A£ _r T Yr T

8x - x #_ Kro _ x A_ #_ Mro #_ (19)
r r r
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Define

1 T
V_r _ = _ #_ Kro 4p_ (20)

1 _£ TT£r £ = _ #£ Mro #_ (21)

Then Eq. (19) can be written as

0k_ _r Yr

0-x- = 2(_- V£r _ x T_r£)
r r r

(22)

Note that from Eqs. (20) and (21), V_r £ and T£r £ can be interpreted as the strain and

kinetic energy respectively of elements associated with design variable x
r"

Thus, given _r and y , the rate of change of eigenvalues can be computed fromr . . .
the energies assoclated with thls design varlable. Since most general-purpose

flnite-element codes provide element strain energy as an output option, one way to

implement (22) is to calculate V£r _ and T_r £ by summing strain energy and kinetic

energy for all elements controlled by design variable x
r"

In the above formulation, we have made use of the form of the stiffness and mass

matrices, Eqs. (II), (12). Not all structural elements can fit into these models but

some important cases do. Some of these are tabulated in Table I.

Using Eqs. (15) to (18), it is possible to derive explicit equations for

eigenvector derivatives as well as second-order derivatives of eigenvalues in terms

of energies associated with various design variables. These are quite tedious and

have not been accomplished so far. In the following, we will discuss the special

case of _i = Yi"

EIGENSOLUTION SENSITIVITIES FOR THE CASE _i = Yi

as:
For this special case, we can use chain rules to rewrite sensitivity derivatives

8A£ OA£ 8a r

Ox O_ Ox
r r r

(23)

Ox O_ Ox
r r r

02A_ 02A_

Ox Ox Ox Ox Ox Ox
r s r s r s

Thus, it remains to find Ok_/O_r, O#Ok£/O_ r and O2h_/OarOas . Note that

(24)

(25)
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OK
r

O_ Kro
r

(26)

OM
r

= MrO (27)
r

Using Eqs. (26), (27) and replacing all Xr, xs in Eqs. (2) to (8) by ar and _s' and

making use of the orthogonality properties of normal modes

T

_ M_j = 0 if _ _ j

as well as the linearity assumptions (Eqs. (15) and (16)), we can derive, after

considerable algebraic manipulation, the following results:

aA_

O_ - C_r _ (28)
r

aOl n

as -
r j=l C_rj _J

(29)

where

82A£ aA_

as as - 2[(8-_- C£r£ +
r s s

C£r j = 2(Vir j - Tir j)

OAg_ n _

C£s_) + _ C£r j Clsj]
r j=1

j_

(30)

(31)

1 T

V_r j = _ (_i Kro (_j (32)

:1A£ TT_rj 2 _ Mro Oj (33)

-- C_r J

C£r j = A£ - A.
3

# j (34)

T_r_

C£r£ - A_
(35)

It should be noted that V_r j can be considered as the "cross mode" strain

energy, since it is the work done by the elastic force in jth mode (i.e. Kr_j) moving

through displacement in the _th mode. Similarly, T_r j can be considered as the

"cross mode" kinetic energy. Thus, eigensolution sensitivity derivatives can be

computed readily when these energy terms become available.
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SENSITIVITYDERIVATIVESFORMODIFIEDSYSTEMS

In iterative analysis, we frequently require the eigensolution derivatives of a
system different from the nominal design. In these situations, assumed mode

reanalysis [6-7] appears to be very efficient. Let AK and AM denote the change to

stiffness and mass matrices, respectively. Then, in term of ei, we have

and

ND

AK = _ (_i- l)Kio (36)
i=l

ND

AM = _ (_i- l)Mio (37)
i=1

Following the development in Ref. 7, the eigensolution of the modified system

can be computed approximately by solving the following reduced eigenvalue problem

q = k M q (38)

where

= sT(K + AK)$

= [AO ] + _ (_i - 1) K'I (39)

= [I] + _ (oi - 1) M'I (40)

where _ is the truncated modal matrix of the original system, and

_. = sT $ (41)
1 KiO

_. = oT _ (42)
i Mi0

Once (37) is solved, the eigenvectors of the modified system Oi' in terms of physical
coordinates, can be completed from

_i = _ qi (43)

For modified systems, the eigenvalue derivatives, Eqs. (28) and (30) are still

applicable except V_r j and T£r j are now defined by

1 T

V£rj = 2 q£ Kr q_ (44)

= ! A£ q_ q£T£rj 2 Mr

and the eigenvector derivatives can be computed from

O_g 8q£

r r

(45)

(46)
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where

aq_ n

a--_-= _ qjr j=l C_rj
(47)

R

C£r j is as defined by (34) or (35) with V_rj, T£r j defined by (44) and (45).

DISCUSSION

In Eq. (7), the second-order derivatives of eigenvalues are shown to be

dependent on eigenvector derivatives. In the present formulation, we can compute

a2A_/a_r a_s Using Eq. (34) without the need to compute eigenvector derivatives

explicitly. Once the derivatives with respective to _'s are known, chain rules can

be used to compute the derivatives with respective to design variables x's (Eqs.
(23) to (25)).

NUMERICAL EXAMPLE

The assumed mode reanalysis sensitivity derivative formulation has been

implemented in a program which post-processes MSC/NASTRAN generated data. The first-

order sensitivity data have been applied to improve analytical model using measured

modal data [8] as well as synthesis of structures with multiple frequency

constraints [9]. Recently the second order derivatives of eigenvalues (Eq. (30))

has also been implemented.

A ten-bar cantilever truss structure, Fig. I, is used to test the program. The

ten members are grouped into 4 design variables as indicated in Figure I. Starting

with a uniform structure with cross sectional area 10 in 2 for all design variables,

the optimal design program described in Ref. 7 is used to mode the first two

natural frequencies from 13.3 and 37.8 Hz to 16 and 39.3 Hz, respectively. This is

accomplished by a sequential linear programming formulation [7,9]. At each

intermediate design, the eigenvalue derivatives are computed using reanalysis

formulations. Table 2 defines the design history. Specifically, the designs at

iteration No. A-O and B-O are analyzed exactly using MSC/NASTRAN. Three iterations

are shown after each exact analysis. The eigensolution at designs A-I to A-3 and

B-I to B-3 are computed using assumed mode reanalysis formulations. Four modes are

used in each case. The first two natural frequencies are tabulated in Table 3.

Also shown in Table 3 are the corresponding exact frequencies. From Table 3, it can

be seen that the accuracy in frequency of assumed mode reanalysis formulation is

very good. Tables 4 to 7 summarize ali/al,ali/ax2,a_/ax I and a_/ax2,

respectively. The results of these tables indicate that the sensitivity derivatives

of modified system can be predicted quite accurately using the assumed-mode

reanalysis formulation.
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CONCLUDINGREMARKS

General procedures for computing eigensolution sensitivity derivatives for a
class of problems have been proposed in this paper. Detailed formulations have been
carried out for a special case. It is shownthat the eigenvalue derivative with a
design variable can be computedfrom strain energy and kinetic energy for that design
variable. Furthermore, when the cross modeenergy terms are available, assumedmode
method can be used for eigensolution as well as associated sensitivity reanalysis.
This efficient formulation has proved to be very effective in synthesis of structures
with multiple frequency constraints [7,9]. Additionally, the present approach can
be implemented in a post-processor of any finite-element programs without the need
to modify the source code.

Since the current formulation provides an efficient approach for computing
second-order eigenvalue derivatives, it would appear that a second-order method for
structural optimization with frequency constraints could be implemented efficiently.
Finally, in view of the success of the formulation for the special case of _i = Yi'

further development for the general case of _i ¢ Yi seemsto be warranted.

SYMBOLS

K = system stiffness matrix
M = system massmatrix
_ = eigenvector of the £th mode

A_ = eigenvalue of the £th mode

= modal matrix of original system

V£r j = cross-mode strain energy

T_r j = cross-mode kinetic energy

X
r

AK

AM

N

n

ND

= rth design variable

= modification in stiffness matrix

= modification in mass matrix

= eigenvector of the th mode of the modified systems

= number of dof of the system

= number of modes computed, n < N

= number of design variables
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TABLEI. - STIFFNESSANDMASSEXPONENTSFOR
SEVERALCOMMONSTRUCTURALELEMENTS

Element Design variable _ y

Truss Cross 1 1
Membrane Thickness 1 1
Plate bending Thickness , 3 1
Beambending Cross-sectional area 2 1
Beambending Section area moment

of inertia* 1 0.5

a,

Circular cross section

TABLE II. - DESIGN HISTORY OF

TEN BAR TRUSS

Iteration

No.
Xl 2 x3 x4

A-0 I0.0 I0.0 I0.0 I0.0

A-I 12.76 8.88 5.0 5.0

A-2 I0.39 8.15 5.0 5.0

A-3 10.44 8.29 5.0 5.0

B-0 10.44 8.29 5.0 5.0

B-I 7.92 7.80 3.44 3.44

B-2 7.47 7.18 2.90 2.90

B-3 7.19 7.0 2.68 2.68

TABLE III. - COMPARISONS OF NATURAL FREQUENCIES

fl(HZ) f2(Hz)
Case Error

No. Approximate Exact (%) Approximate Exact

Error

(%)

A-I 16.88 16.60 1.71 40.16

A-2 15.96 15.78 1.14 39.85

A-3 15.99 15.82 1.10 40.00

B-I 15.90 15.89 0.II 40.23

B-2 15.99 15.98 0.03 39.98

B-3 15.99 15.99 0.00 40.00

39 03

38 99

39 II

39 87

39 44

39 33

2.88

2.19

1.27

0.88

1.37

1.71

TABLE IV. COMPARISON OF 8Al/SX 1 TABLE V. - COMPARISON OF 8_i/8x2

Case 8X/_x 8_/_x
No.

Eq. (28) Exact

Error

(%)

A-I 418.9 454.0

A-2 494.2 509.2

A-3 495.8 505.9

B-I 557.2 578.3

B-2 607.3 609.2

B-3 635.8 620.0

7.7

2.9

1.9

3.7

0.3

2.6

Case 8A/Sx 8_/8x Error

No. (%)
Eq. (28) Exact

A-1 216.7

A-2 208.8

A-3 202.3

B-I 203.8

B-2 203.8

B-3 196.0

294 6

269 9

262 7

205 2

222 9

221 0

26.5

22.5

23.5
0.7

8.6

11.3
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TABLEVI. - COMPARISONOF8k2/SXl TABLEVII. - COMPARISONOF8k2/Sx2

Case 8hlNx 8E/_x Error
No. (%)

Eq. (28) Exact

A-1 -812.2

A-2 -747.4

A-3 -764.7

B-I -1232.3

B-2 -1387.7

B-3 -1482.4

-786 9

-793 9

-805 2

-1247 8

-1320 2

-1435 7

3.2

5.8

9.0

1.2

5.1

3.2

Case 8AlSx 8A/Sx Error

No. (%)
Eq. (28) Exact

A-I 3337.9

A-2 3678.3

A-3 3647.5

B-I 3523.5

B-2 3874.9

B-3 4025.3

3652 3

2917 2

2876 9

2928 3

3038 0

3043 1

31.35

26.1

26.8

20.3

27.5

32.3
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Yl

245



N87-18871

APPPLICATION OF A SYSTEM MODIFICATION TECHNIQUE TO
DYNAMIC TUNING OF A SPINNING ROTOR BLADE

C. V. Spain
PRC Kentron, Inc.

Aerospace Technologies Division
Hampton, Virginia

I NTRODUCTI ON

An important consideration in the development of modern helicopters is the
vibratory response of the main rotor blade. One way to minimize vibration levels is
to ensure that natural frequencies of the spinnning main rotor blade are well
removed from integer multiples of the rotor speed. This report demonstrates a
technique for dynamically tuning a finite-element model of a rotor blade to
accomplish that end.

Rotor blades are an ideal subject for this type of analysis because a good
structural representation can be achieved with a single string of beam elements and
relatively few degrees of freedom. This means that the numerous system stiffness
and mass matrices required can be formed with relatively low central processor
time. The technique is valid, however, for larger and more complex models.

Because the tuning process involves the independent redistribution of mass and

stiffness, it is especially applicable to composite blade designs in which mass and

stiffness can be controlled independently by fiber orientation and the use of
nonstructural mass.

In the following sections, a brief overview is given of the general purpose
finite element system known as Engineering Analysis Language (EAL, ref. 1) which was

used in this work. A description of the EAL System Modification (SM) processor is

then given along with an explanation of special algorithms developed to be used in

conjunction with SM. Finally, this technique is demonstrated by dynamically tuning

a model of an advanced composite rotor blade.

This work was accomplished in support of the Interdisciplinary Research Office
of NASA Langley Research Center and the objectives were threefold. The first was to

establish a technique for tuning the natural frequencies of a spinning rotor blade.

The second was to demonstrate the usefulness of the EAL SM processor and to be able

to perform sensitivity and modification operations without dependence on additional

software. The final objective was to provide guidelines on advanced use of the SM

processor, i.e., use beyond the scope of currently available documentation.

ENGINEERING ANALYSIS LANGUAGE (EAL)

EAL is a general purpose finite element system produced by Engineering
Information Systems, Inc. It evolved from an earlier finite element program known
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as SPAR (ref. 2). In its present form, EAL consists of an Executive Control System

(ECS) in which the user can execute work flow logic, looping, branching and data

storage; and processors (similar to subroutines) which actually perform structural

and utility computations. Data input or computations result in data sets which are

stored in binary data bases or libraries which can be saved and referred to

indefinitely. The user communicates with and uses these features with input known
as runstreams.

Reference 1 is the current EAL reference manual, however, the older SPAR

reference manual (ref. 2) must be used for the SM processor. EAL version 209 was
used in this work.

EAL SYSTEM MODIFICATION (SM) FOR FREQUENCY MODIFICATION

The approach in modifying frequencies is to first specify a set of target

(required) eigenvalues corresponding to natural frequencies of the original model.

Parameters to be changed must be identified along with limits on acceptable changes.
Sensitivities of the eigenvalues to parameter changes must then be calculated. To

determine the actual structural changes, the statistical method described in

reference 3 is used.

SM operates in 4 phases as described below. The notation used here is

generally consistent with the SM description contained in reference 2.

Phase 1: The differences (AX) between the eigenvalue targets (XT) and current

eigenvalues (X) are calculated. That is:

AX=XT-X (1)

Phase 2:^ The purpose of phase 2 is to approximate the sensitivities of eigenvalues
(radiansL/sec L) to specified changes in structural parameters which affect

stiffness and/or mass. These specified changes are known as unit parameters.
System stiffness change (AK) and mass change (AM) matrices are formed for each unit

parameter.

Because the original model eigenvalue solution is based on equation 2 below,

where xi is the ith eigenvalue and M, K and Yi are the system mass, system

stiffness and the ith mode shape, respectively, then the modified system can be

described by equation 3.

XiMYi-KYi:O (2)

(Xi+AXi)(M+AM)- (K+AK) (Yi+AYi )=0 (3)

With some simplifying assumptions (i.e. changes in mode shapes and products of

the changes (a's) are very small), a reasonable approximation of eigenvalue

sensitivity is expressed by equation (4).

Axi=YiTAKYi-xiYTAMYi (4)

The AK, AM and AXi are therefore the results of phase 2 which is computation-
ally the most costly phase because the system mass and stiffness matrices must be
formed for each unit parameter, Computations in the other 3 phases are trivial in
terms of central processor time.
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Equation 4 is valid only for a nonspinning structure and must be augmented for

a spinning structure as described later.

Phase 3:

are estimated based on equation (5) below which is an adaptation of the work
presented in reference 3.,

(I )-I
lAP} :[Srr ] [NT]T NT] [Srr] [NT]T+ [See] [N] {ax}

where:

The actual structural changes needed to realize the targeted eigenvalues

(5)

AP is a set of multipliers which reflects the total estimated structural

modifications needed in terms of corresponding unit parameters.

Srr is the covariance or weighting matrix. The diagonal terms, each

corresponding to the unit parameters in sequence, allow for the relative

weighting of those parameters. In this application, values are set at unity

and reset in later iterations if the parameter change limits are being
exceeded.

is a matrix containing reciprocals of the current eigenvalues (1/xi).

is the sensitivity matrix consisting of (A_i's) with the rows corresponding

to the number of targets and the columns to the number of unit parameters.

See is the target tolerance matrix associated with acceptable variances of the

resulting eigenvalues from the targets.

AX is as described in equation (i).

The purpose of using this method is to achieve the targeted eigenvalues with

minimum change to the structure. Srr can be used to influence how much a
particular unit parameter is changed. For example, a unit parameter which can be

changed with small penalty or is not likely to exceed the prescribed change limits

may be assigned an Srr value of 1.0, whereas, a unit parameter which should be

changed as little as possible may be assigned a value of 0.1. See values normally
range from 0.0 (when a more exact attainment of the targeted eigenvalue is being

sought) to 0.1 (when only an approximate result is needed). As described in

reference 4, See values of 0.001 when most Srr values are 1.0 normally provide
satisfactory results.

Phase 4: Each term of the AP matrix is compared to the parameter change limits data
set (described below). If any of the limits are exceeded, a APX matrix is formed
where the smaller terms (from AP or limits) are used. APX (AP if no limits were

exceeded) is then used to actually change the structural parameter data sets of the
finite-element model.

To test the results after the completion of phase 4, new mass and stiffness

matrices must be formed, and the original process of computing mode shapes and

frequencies is repeated. Normally, two or three iterations are sufficient to

achieve the desired results if reasonable targets, unit parameters and change

limits were selected. A complete iteration is the execution of phases 1-4 and

testing of the results by calculating frequencies of the modified structure.
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Prior to executing SM, EAL data sets must be established defining the targets,

parameters, change limits, weighting and target tolerances. The EAL data set names
for these inputs are given below followed by brief descriptions.

TVAL - Target (desired) eigenvalues (radian2/sec 2) preceded by mode sequence

numbers.

PARA - Each PARA data set is a group of changes (incremental element parameter or

rigid mass) expressed as a fraction of the existing value. Each data set
is then considered a unit parameter in SM computations.

SEE - Target tolerance matrix (See).

SRR - Covariance or weighting matrix (Srr).

DPLI - Parameter change limits (minimums and maximums) expressed as multiples (+ or

-) of unit parameters defined in the PARA data sets.

AUGMENTATION TO THE SM PROCESSOR

In this application, it was necessary to develop three algorithms to augment
the SM processor. These were implemented in the EAL Arithmetic Utility System (AUS)

processor. The first was to add the centrifugal stiffening effect of the mass

change (AM) matrices to the sensitivity matrix. The second was to revise the

weighting matrix (Srr) when the original values resulted in too many values of the

change limits data set (DPLI) being violated by the AP matrix, thus causing

structural changes which were inadequate in achieving targeted results. The third

was to update the change limits after a complete iteration so that in the next

iteration, the change limits data set (DPLI), which is based on a fraction of the

current structural data set values, expresses the same engineering limits in terms

of mass or stiffness originally intended.

To correct the sensitivity matrix, an additional system stiffness matrix must

be formed for each nonzero AM matrix formed in phase 2. This matrix [AKC] reflects

the centrifugal effect of the spinning AM and is formed using the AUS SPIN command

to calculate a centrifugal force matrix and the elastic and centripetal

contributions to stiffness. The Static Solution (SSOL) processor is used to

calculate deflections due to the centrifugal force. The resulting stresses are

embedded in the element state data sets by the GSF processor. Geometric

stiffness changes are then calculted using the KG processor. The elastic,

centripetal and geometric stiffness contributions are then summed to form [AKC]
which is used to finalize the sensitivities as follows:

AXiTOTAL:Xi+Yi [AKC] yT (6)
I

where _i is given by equation 4.

The weighting matrix (Srr) is revised when limits (DPLI) are violated by

(AP). This is accomplished simply by multiplying each term of the (Srr) matrix by

the ratios of corresponding terms of the APX and AP matrices. That is,
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srr ] NEW rr OLD
aPX 1

aPt
6PX2

aP2 •.

(7)

which has the effect of reducing those Srr terms corresponding to unit parameters

which are tending to be changed beyond their allowable limits in phase 3. This

process is repeated until the resulting APX matrix resulting from phase 4 does not,

in the judgement of the user, differ too greatly from the AP matrix. If this cannot

be achieved, the targets may be unachievable based on the selected parameters and
change limits.

The updating of the change limits (DPLI) for the subsequent iteration is

achieved by the following process which updates each term of the DPLI matrix to

retain the original engineering value.

LIOLD-APX 1 L2OLD-APX 2

oo

I+flAPX 1 I+f2APX 2

UIOLD-APX 1

-i_IAPX1 .. (Etc for each parameter)_ J

[APLI]NEW =

where:

APLINE W = New parameter change limits data set.

LIOLD,L2oLD = Old lower limits for parameters 1 and 2.

UIOLD = Old upper limit for parameter 1.

(8)

APX 1, APX 2 = The final changes for parameters 1 and 2 produced in SM phases 3
and 4.

fl, f2 = The fraction used in defining a unit change for parameters 1 and 2 in

the PARA data sets. For this process to work, the fraction must be

uniform within a given PARA data set.

DEMONSTRATION

The finite element model (see figure I) used in this report is based on a

preliminary design of an advanced composite main rotor blade developed by Mark W.

Nixon of the U.S. Army Aerostructures Research Group at Langley Research Center.
Table I gives the mass and stiffness properties of the baseline model which resulted

from a composite analysis program also developed by Mr. Nixon. Table II provides

the constraints or parameter changes which cannot be exceeded during the tuning
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process. These constraints are based on the designer's estimate of what changes can

be reasonably made without sacrificing the structural integrity or performance of
the rotor blade.

Additional constraints on the problem were that bending stiffness, if modified,

must be changed uniformly over large segments of the blade. The minimum allowable
mass moment of inertia about the hub was 19000 Ib-in-sec 2 for autorotation

capability.

The objective of the tuning process was to minimize resonances caused when

flexible mode frequencies were too close to integer multiples of the rotor speed up

to eight per revolution (8P). The main rotor speed was 263 RPM (4.3833 HZ) and a

criterion of at least .2P separation was used. Table III lists the unacceptable

frequency ranges along with the natural frequencies of the original model and those

of the modified model following the first and second tuning iterations.

The overall process which was conducted interactively is depicted in figure 2.

Figure 3 contains the actual EAL runstreams used in the process. The runstreams in
combination with this paper and the references should provide adequate guidelines
for a new SM user.

Modes 1 and 2 are the flatwise and edgewise rigid body modes, and due to the

physics of a spinning rotor blade, cannot be significantly altered. Modes 3 through

7 were therefore targeted for modification. Due to blade twist, modes 3, 5, 6 and 7

are combined flatwise/edgewise bending modes whereas mode 4 is predominantly

torsion. It appeared reasonable to drive all of the bending mode frequencies to

approximately .25P below the nearest P multiple while allowing the torsion mode to

remain close to its original frequency. A study of the sensitivities indicated that
to drive frequencies in opposite directions would have required unacceptably large

changes in certain parameters. The selected target frequencies are listed in Tables

III and IV. Table IV also lists all of the SM inputs.

Results of two complete iterations are summarized in Table III and figure 4.

Figure 4 shows the ratio of calculated to target frequencies plotted against the
iteration number ("0" iteration being the original model). A ratio of 1.0 would

indicate complete convergence with the target value. The first iteration did not

move all of the frequencies to acceptable ranges (Table III) but did move all of

them towards the targets as shown in figure 4. The second iteration produced

frequencies out of the unacceptable ranges and very close to the targeted

frequencies. The total weight of the blade increased from 250.54 Ib to 265.30 Ib

and the m_ss moment of inertia about the hub increased from 19007.1 to 19780.7
Ib-in-sec (. Table V summarizes the final structural properties of the modified
rotor blade model.

CONCLUDING REMARKS

A sensitivity technique useful in minimizing vibrations associated with
helicopter rotor blades has been demonstrated. This and similar techniques can be
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effective in achieving desired performance with minimum change to the basic

structure. This is especially true for spinning structures because centrifugal

stiffening complicates the intuitive process of changing mass and stiffness to tune
natural frequencies.

An advantage of the process described in this report is that the modification

capability is built into the structural analysis program. This eliminates the need
for data transfer and development or use of external software.

The EAL System Modification processor has applications beyond that for which it

was originally produced and documented, as demonstrated here for a spinning

structure. As long as the equations for calculating appropriate sensitivities are

known, structural modification can be computed to achieve any targeted response such

as mode shapes, static deflections, stress and bending moments and loads due to
dynamic loads.

I •

.
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TABLE I. - MODEL PROPERTIES

Lumped
inerti a

J oi nt Lumped about

Joint Location Mass z-axis

No. (z,in) (Ib) (Ib-in-sec 2)

I 0 0 .2415

2 16.1 0 .2700

3 18.0 0 .0585

4 20.0 0 .1230

5 26.2 0 .1860

6 32.4 0 .1860

7 38.6 0 .1905

8 45.1 0.32 .1551

9 51.5 0.645 .1161

10 58.0 0.645 .1161

11 64.4 1.93 .3474

12 96.6 3.22 .5796

13 128.8 3.22 .5796

14 161.0 3.22 .5796

15 193.2 2.415 .4347

16 209.3 1.61 .2898

17 225.4 1.61 .2898

18 241.5 1.61 .31395

19 257.6 1.61 .36225

20 273.7 1.61 .3864

21 289.8 1.125 .2700

22 296.2 0.645 .1548

23 302.7 0.645 .1548

24 309.1 0.32 .2068

25 315.6 0.35 .2580

26 322.0 0.35 .1280

Edgewise Flatwise Twist Cross Torsional

Stiffness Stiffness Angle Distributed Sectional Stiffness

Beam Joints EI11 _ E122 _ LE Down Weight Area GJ

Section Spanned (LBF-in z ) (LBF-in L ) (DEGR) (Lbs/in) In2 (LBF-in 2 )

1 I - 2 900.0 900.0 26.0 2.29 44.44 100.00

2 2 - 3 .0001 .0001 25.34 2.29 44.44 87.50

3 3 - 4 .0001 .0001 25.26 2.29 44.44 87.50

4 4 - 5 580.0 360.0 25.17 2.20 44.44 75.50

5 5 - 6 580.0 360.0 24.92 2.20 44.44 75.50

6 6 - 7 580.0 360.0 24.66 2.20 44.44 75.50

7 7 - 8 580.0 298.0 24.41 2.60 44.44 60.00

8 8 - 9 1260.0 25.89 24.14 0.35 78.84 17.125

9 9 - 10 1260.0 25.89 23.87 0.35 78.84 17.125

10 10 - 11 1260.0 25.89 23.60 0.35 78.84 I?.125

11 11 - 12 1260.0 25.89 23.34 0.35 78.84 17.125

12 12 - 13 1260.0 25.89 22.01 0.35 78.84 17.125

13 13 - 14 1260.0 25.89 20.68 0.35 78.84 17.125

14 14 - 15 1260.0 25.89 19.35 0.35 78.84 17.125

15 15 - 16 1260.0 25.89 18.02 0.35 78.84 17.125

16 16 - 17 1260.0 25.89 17.34 0.35 78.84 17.125

17 17 - 18 1260.0 25.89 16.69 0.35 78.84 17.125

18 18 - 19 1260.0 25.89 16.03 0.35 78.84 17.125

19 19 - 20 1260.0 25.89 15.67 0.35 78.84 17.125

20 20 - 21 1260.0 25.89 14.70 0.35 78.84 17.125

21 21 - 22 1260.0 25.89 14.03 0.35 78.84 17.125

22 22 - 23 1260.0 25.89 13.77 0.35 78.84 17.125

23 23 - 24 1260.0 25.89 13.51 0.35 78.84 17.125

24 24 - 25 580.0 24.0 13.23 0.90 44.44 60.00

25 25 - 26 580.0 24.0 12.77 3.3706 44.44 60.00

Total mass moment of inertia about x axis (hub): 19007.1 Ib in sec 2. Total weight: 250.54 lb.

* Stiffness paramaters are with respect to a local reference frame which is rotated the amount of the twist angle

from the global frame shown on figure I.
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TABLE If. - CHANGE LIMITS ORIGINAJ- PAGE |5
OF POOR QUALWY

Joint

No.

Lumped

Mass

%

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 -50 +i00

i0 -50 +i00

ii -50 +i00

12 -50 +100

13 -50 +100

14 -50 +100

15 -50 +100

16 -50 +I00

17 -50 +100

18 -50 +100

19 -50 +100

20 -50 +100

21 -50 +I00

22 -50 +100

23 -50 +100

24 -50 +100

25 +i00

26 +100

Edgewise

Section Stiffness Flatwise

No. % Stiffness

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

IB

19

20

21

22

23

24

25

+_2o

+20

+20

+20

+20

+20 '

+20

+20 b*

+20

+20

+20

+20

+20

+20

+20

+20.

0

0

0

0

0

0

0

±1o ]

_1o |

±i0 |

_i0_*

±lo[

_lOj

±1o 1

+I0

+10

+10 *

±1o i

±1o I

+lOJ
+lOJ

0

0

Minimum Allowable Mass Moment of Inertia About X Axis: 19000 lb in sec 2

* Items in brackets must be changed uniformly as a group.

TABLE III. - MODEL NATUP_L FREQUENCIES
COMPAREDTO UNACCEPTABLE RANGES

MULTIPLE, M UNACCEPTABLE RANGES, HZ (MP¢.2P)

I 3.507 - 5.260

2 7.890 - 9.643

3 12.273 - 14.O27

4 16.657 - 18.410

5 21.040 - 22.793

6 25.423 - 27.177

7 29.807 - 31.560

8 34.190 - 35.943

WHERE P=263rpm OR 4.3833HZ

FREQUENCIES

MODE TARGET ORIGINAL ITER I ITER 2

3 12.054 12.488" 12.067 12.030

4 16.0896 16.090 16.010 15.988

5 20.8208 22.460* 21.062" 20.928

6 23.0125 25,056 23.158 22.949

7 33.9708 36.368 34,326* 34.114

*IN UNACCEPTABLE RANGE
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TABLE IV. - SYSTEM MODIFICATION INPUT DATA

SEQUENCE NO.

i

2

3

4

5

TARGET FREQUENCIES
(TVAL SM) z

MODE NO, EIGENVALUE TARGET
NO.

3 5736.3299 (12.05 HZ)

4 10219.9920 (16.09 HZ) I

5 17114.1744 (20.82 HZ) 2

6 20906.7892 (23.01 HZ) 3

7 45558.7855 (33.97 HZ) 4
5

UNIT PARAMETERS

(PARA SM n)

DATA LINE 2 COLUMN 3

n TYPE NO. FRACTI0N NO.

I RIGID MASS 25 .1 I TO 3

RIGID MASS 26 .I I TO 3

2 RIGID MASS 9 .i I TO 3

RIGID MASS I0 .I I TO 3

3 RIGID MASS 11 .I I TO 3

4 RIGID MASS 12 .I i TO 3

5 RIGID M_SS 13 .i I TO 3

6 RIGID MASS 14 .I i TO 3

7 RIGID MASS 15 .I 1 TO 3

8 RIGID MASS 16 ,i i TO 3

9 RIGID MASS 17 .1 I TO 3

I0 RIGID MASS 18 .i 1 TO 3

ii RIGID t_SS 19 .i i TO 3

12 RIGID MASS 29 ,i 1 TO 3

13 RIGID MASS 21 .I I TO 3

14 RIGID MASS 22 .I i TO 3

RIGID MASS 23 .I i TO 3

15 RIGID MASS 24 .I i TO 3

16 EDGEWISE STIFFNESS

(EI11) 8 TO 23 .1 4

17 FLATWISE STIFFNESS

(E122) 16 TO 23 .I 6

18 FLATWISE STIFFNESS

(E122) 8 TO 15 .I 6

TARGET TOLERANCES
(SEE SM)

MODE

NO.

3

4

5

6

7

TOLERANCE

.001

.IW

.001

.001

.001

INITIAL COVARIANCE s

AND CHANGE LIMITS

(SRR SM AND DPLI SM)

UNIT

PARAMETER NO. COVARIANCE LIMITS 6

I I -I0,+I0

2-15 i -5,+10

16 i -2,+2

17 I -I,+i

18 i -1,+I

NOTES: These data correspond to the input in the EAL runstream in figure 3b.

1. Names in parentheses are EAL data set names.

2. Line number of structural data set corresponds to joint for rigid
masses and beam segment number for stlffnesses.

3. The unit parameter is a set of numbers computed from mu]tiplying
the fraction times the structural values in the indicated lines

and columns.

4. A tolerance value of 0.1 rather than 0.001 indicates that it is

less critical for the final frequency to be very close to the
target value.

5. These values were modified in the iteration process.

6. Limits of -5 to plus I0 moans that the structural paramoter cannot

be reduced by more than 5 x (FRACTION) x (EXISTING VALUE) nor
increased more than 10 x (FRACTION) x (EXISTING VALUE).

TABLE V. - FINAL MODIFIED STRUCTURAL PROPERTIES

LUMPED EDGEWISE FLATWISE

JOINT MASS BEAM STIFFNESS STIFFNESS

NO. (Ib) SECTION EIII ^ E122
(LBF inz) LBF in2)

9 1.284

10 1.284

11 3.785

12 6.440

13 6.286

14 6.401

15 1.883

16 1.025

17 1.881

18 3.190

19 3.220

20 3.201

21 0.5713

21 0.3225

23 0.3225

24 0.1815

25 0.1275

26 0.1275

8 1046.96 23.311
9 1046.96 23.311

I0 1046.96 23.311
Ii 1046.96 23.311

12 1046.96 23.311
13 1046.96 23.311

14 1046.96 23.311

15 1046.96 23.32

16 1046.96 23.32

17 1046.96 23.32

18 1046.96 23.32

19 1046.96 23.32

20 1046.96 23.32

21 1046.96 23.32

22 1046.96 23.32

23 1046.96 23.32

TOTAL MASS MOMENT OF INERTIA ABOUT X AXIS (HUB): 19780

TOTAL WEIGHT: 265.30 Ib

NOTE: All other properties unchanged from Table I.

Ib-in sec2 .
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Figure 1.- Rotor blade model.
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Figure 2.- Procedure for tuning frequencies of a
spinning structure.
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;)S e. e. 316.66
;)6 O. e. 3_..ee
COil- 1
ZERO 1 2 3 4 5 6zi
I_TC
1 1.÷G .26 0. 6G-.4+6
DR
l_;lUN I1 Ai 12 _. A F
Glt.nl 1 gee.o o. 9ee.e e.
GIUN 2 .Reel $..OOet e.
GIU. 3 .Reel e. .oRe1 e.
GIUfl 4 5H.O O. 360.0 8.
GIVN S 588.e e. 360.0 0.
GIUN G 580.0 e. 360.0 e.
GIUIt 7 580.0 e. 298.0 e.
GIUH 8 1260. e. 25.89 e.
GIUN g 1_). O. ;)5.89 O.
GZUH 10 1260. e. Ps.Bg O.
GIUN 11 I_O. 8. 25.89 0.
GZVN 12 1260. O. 2S.8R 0.
GIUH 13 1260. 0. 2S.8R 8.
G|Ufl 14 I;)68. O. 25.88 0.
GIUN 15 1;)68. e. 2S.89 O.
GXUN 16 1268. e. 25.89 O.
GI_I 17 1260. 8. 2S.SS 0.
GIUN 18 1260. 8. ;)5.89 O.
GlVN 18 1260. O. 2S.89 O.
GIUN 2R 1260. O. 25.89 0.
GIUN 21 1260. 0. 25.89 0.
GIUN 22 12641. O. 2s.8g 0.

_IUN 23
GIUN 24
GIVfl 25
IqREF

1 1
2 1
3 1
4 1
5 1
6 t
7 t
8 1
9 t

10 1
11 1
12 t
13 1
14 1
15 1
16 1
17 1
18 t
19 1
28 1
21 1
;)2 1
;)3 1
24 1
26 1
RP_SS

126e. e. 25.89 e. ?8.64 17.126
sse.e e. 24.00 o. 44.44 60.000
S80.e e. ;)4.e0 e. 44.44 60.eee

-1 .898?9
-1 .8e378
-1 .9e438
-1 .ReDes
-1 .98698
-1 .94)880
-1 .SteSt
-1 .91;)SS
-1 .91447
-1 .91636
-1 .91817
-1 .8;)712
-1 .93557
-1 .94351
-1 .95695
-1 .95455
-1 .95787
-1 .96112
-1 .96;)81
-1 .96727
-1 .97017
-1 .97126
-I .87234
-1 .87346
-1 .97527

Cfl .ee;)SRe67 .oe_sRe6?
8 0.3;)
9 0.645
10 0.645
11 1.93
12 3.2;)

44.44 100.00 13 3.;)2
44.44 87.504) 14 3.22
44.44 87.5@R 15 2.455
44.44 7S.eee 16 1.61
44.44 ?5.Gee 17 1.61
44.44 "_.(N)R 18 1.61
44.44 64).eRe 19 2.61
78.84 17.126 28 1.61
78.84 17.I_5 2i 1.125
78.64 17.11)5 _2 0.645
78.84 17.1;)5 23 D.646
?8.84 17.1_:_ 24 0.32
78.64 17.125 25 .35
78.84 17.1;)5 ;)G .35
78.84 17.125 _SS,'J flON STRUCT biT DISTR
?8.84 17.1;)5 ! 2.29
78.84 17.125 2 ;).29
?8.84 17.125 3 ;).;)9
78.84 17.1;)5 4 2.20
78.84 17.125 5 2.20
78.24 17.1;)5 G 2.20
78.84 17.125

DER2-SUR(DE_ I_6)
? 2.68 fl+RM • SUM(R_S DEll, )
8 e.3s IxoT Dcu
9 0.3S DISA 1EQMF
18 e.3S *XOT EKS
i1 e.35 IXOT TAN
12 e.3s XXOT K
13 e.3S SPDP-2
14 e.3s ZXOT AUS
16 e.3s SPIn: fl+Rlq K ;)7.5413 e.e O. e. e. e. S 27.5413 RAD/6EC
16 e.3S ZXGT RSI
17 @.35 RESET K-KSP_I
18 0.35 ZXOT SSOL
19 O.3S RESET K.KSPII
;)e e.3s 8XGT GSE
21 0.35 RESET ERB[D-i
_?. @.35 SXOT KG
23 0.36 SPDP'2
24 0.90 XXOT _US

3.3786 KECG-SUR(KSPN KG)
ZXGT ELD SXQT RSI
E21 RESET K-KECG

1" ROTOR BLADE ZXOT EIG
NSECT-I:N/MT.I:NNSU-1 RESET INIT-II NREO-? R-R+Rfl K-KECG OUTL,1
IIV,C NSECT-! IXGT J_JS
INC HNSU-I RIG-RIGID(I)
ll, g NRIEF-1 I'IR=PROD(fl_Rfl RIG)
1 2 1 c_, GR-XTYD(RIG Re)
ZXGT E GIqU'1"=UflX(Mt(386. GR)
RESET G-386. IXGT DCU
SXOT AUS PRINT I GR
TAIL(NI-ENJ-;)G)IIh_ PRINT I GRMT
I-6: J" I: .;)4lSeeE+ee 8XQT EXIT
1"6: J- 2: .;)?eeeelE+ee
I'6: J" 3: .586888E-et
I-6t J- 4: .123t)4_E*tI
1.6) J- St .18_eeeE+Re
I-6: J- 6: .12_N_E*Oe
1.6: J- 7: .198Se_E,el
1-61 J- 8: .15518_E*ee

IG J ,, 1,61,_... ORIGINAL PAGEI'6: J" 10: .II61e_E+OD

1-61 J- 11: .3474881E*OO |_

1-6, J. ,2, s_,_.,, OF POOR QUALITY1-6! J- 13: .579GORE+DO
I"6! J" 141 .5?_e_E+ei
I-St J- ISI .434704)4[*00
I-6l J- 161 .28980e£+eO
I-St J- 171 .289_082*D8
I*6t J- 18: .3i3SSIE*el
1-61 J" 19l .36_.S0_+06
I'6J J" 28_ .3864ROE÷H
1-6= J- 21, .27oei_E+eo
1.6= J" 2_: .1S4800E*88
1.61 J- 23: .IS4808E÷68
1,66 J- 24t .;)OG80eE+O8
I-6; J- 25: .2ssoeeE÷e8
I-Ss J- _81 .128888E÷00

Figure 3a.- EAL runstream for calculation of natural

of the spinning structure.
frequencies
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ORIGINAL PAGE IS

OF POOR QUALITY
zxoT RUS

TRBL{NI,2 NJ-S)STUAL Sfl
J,lS3. 5736.3299 $ia.es4 HZ

j.214, t621g.9926 $ 16.e896
J-3tS. 17114.1744 $ 2e.8_$8

J-4t6. 20906.7862$ 23.012S
J-S_?. 45558.7855$ 33.9708Z
TASL(NI-S NJ,2)IPRRR SR lsJ,lslS. L=S..I I. 3,

J-2IlS. 26..I 1. 3.
TAIL(NI-S NJ-2)sP_R SN 2sJ-lsl8. eg..1 1. 3.

J.2tlS. 10..1 1. 3.
TRDL(NI'S NJ,I):PRRR SR 3:J-IriS. 11. .1 1, 3.
TREL(NI-S I,I,J-I)IPARR SN 4¢,]-1;18. 12..1 1. 3.

TRBL(NI-S HJ-I)ZPRRA SN SIJ-tz18. 13..1 1. 3.
TRBL(NI-S NJ-I)zPRRR Sfl 61J-lt18. 14..[ 1. 3.

T_BL(NZ-S NJ-I):PRRR SN ?:J-|:18. IS..1 1. 3.
TRBL(NI-S I_-I)ZPRRR SN 8ZJ-lslS. 16..I 1. 3.

T_BL(ttI-S HJ-I):PRRA Sfl egzJ.l:18. 17..I 1. 3.
TRBL(NI.S NJ-I):PRRR SN lezJ,tz18. 12..1 1. 3.

TRBL(NI,5 NJ-I):PRRA Sfl 11z J-l;|8. IS..1 1. 3.

TRBL(N|-S NJ-I):PRRR SR 12:J-1¢18. 26..1 1. 3.
TRBL(NI-S NJ-I):PRRA Sfl 131,]-1:18. :_1..1 1. 3.

T_L(NI-5 NJo2)zPRRR SN 14|J-lt18. _...1 I. 3.
J-2zIS. 23..1 1. 3.

TRBL(NI-S NJ-1):PARA SN ISZJ-lzIS. 24..1 1. 3.
TR|L(NI-5 NJ-16)zPRRA Sfl 16zJ-I 16

9. 8. .1 4. 4.
9.9. .14.4.

9. lO. .1 4_ 4.
9. 11. .1 4. 4.

9. 1;:'..I 4. 4.

9. 13. .1 4. 4.
9. 14. .14. 4.

9. 15. .1 4. 4.

9. 16. .14.4.
9.1?. .14.4.

9. 18. .1 4. 4.
9. 19. .14.4.

9. 26..1 4. 4.

9. 21. .1 4, 4.
9. _?,. .14.4.

9. ;_3. .14.4.
TRRLCNI.5 NJ-B)_PRRA SR l?tJ.L S
9. 16. .1 6. 6.

g. 17, .16.6.
9. 18. .1 6. 6.

9. 19. .16.6.
9. ;_e. .16.6.
9.21. .16.6.

9. P._o .1 6. 6.
9.23. .16.6.
TR|L(tII-S NJ-B)sPRRA Sfl ISsJ-I 8

9.8. .1 6. 6.
9. 9. .I 6. 6.
6. IS. .I 6. 6.

9. 11. .1 6° 6.

D. 12. .1 6. 6.

Figure 3b.- EAL runstream for i

ZXQT SN SDEUELOP DR FOR ERCH PRRI_q
RESET I_RA-18 G'386. OUTL-I NUUX-2

OPER 1 I _) 0
XXQT RSI
RESET K,KSLAST KECG

ZXQT _JS$ DEUEL INERTIRL STIFFNESS FOR Pl_R_q 1
DEFINE DRT-DR SR 1 ltDf_-UNION(DNT)
SPINxD@_ K 27.5413 0. 0. 0. O. 6-

IXOT SSOL
RESET K-KSPN
IXGT GSF

RESET Efl|ED-t
'*X(IT KG

IX(iT DCU
CHNI I KG SPAR 36 e IX_I SPRR 36 1
lX(IT RUSS DEUEL INERTIAL STIFFNESS FOR P_11q 2

DEFINE DRT-DN SR 2 I:_qR-UNI(IN(DflT)

SPImDI_ K 2?.5413 e. e. e. e° e.

SX(iT SSOL., -
RESET K-KSPN

IX(iT GSF
RESET EfliED'1

IX(IT KG
IXOT _U

CHNI I KG SPRR 36 (i DK2 SP_q 36 2
_eXGT _JS$ BEUEL IN[RTIRL STIFFNESS FOR PAR_I 3

DEFINE DflT-DIR SR 3 II_qA-UNION(DflT)
gPIN:D_q K 27.5413 O. 0. O. O. S.

IX(iT SSOL
RESET K'KSPN

IXOT GSF
RESET ERBED- 1

IX(iT KG
SX(IT DCLI

CHef1 I KG SPRR 36 0 OK3 SP_ 36 3

IX(IT NJSS DEUEL INERTIAL STIFFNESS FOR PRRRfl 4
DEFINE DNT-DIq SR 4 I:_-UNION(DNT)

SPINtDf_ g 27.5413 O. (i. (i. e. 0.
ZXOT SS(IL

RESET K-KSPN
SX(IT GSF

RESET EflIED- 1
IX(IT KG

IX(iT DEU
CHiN 1 KG SPRR 36 e DE4 SPRR 36 4

IX(IT AUSI DEUEL INERTIAL STIFFNESS FOR PARNI S
DEFINE DflToDR SH S ltDRA-UNI(IN(DflT)

SPINI_IR K 27.S413 O. (i. 0. e. 0.
SX(IT SS(IL .
RESET K-KSPfl
IX(IT GSF

RESET ENDED-1
IX(IT K(i

_X_T 1)¢U

CHRN | KG SPAR 36 O OKS SPAR 36 S
SX(IT RUSS DEUEL INERTIRL STIFFNESS FOR PARRR 6

DEFINE DflT-DN SFI 6 IsDRR*UNION(DRT)

Figure 3c.-

9. 13. .1 6. 6.

9. 14. .1 6. 6.

9. 1S. .1 6. 6.
TABL(NI.1NJ.S):SEE SN:J.I sse.eel .1 .eel .eel .eel

T_BL(NI-I NJ-L8)sSRR SNsJ-I 18:1.
TRIL(HI-2 NJ-t8)sDPLI SRtJ-l:-le. 10.

J-2 IS_-5.e lO.

J-IGs-2. 2.
J-l?t-I, 1.
J.IS_-l. 1.

SX(iT EXIT

nput to the SM processor.
SPINI_q_ K 27.5413 I. (i. I. O. e.
IX(IT SSOL

RESET K-KSPN
IX(iT GSF

RESET ENDED-1
IX(IT KG
IX(iT DEU
CHN_i I K(i SPRR 36 e DK6 SPl_ 36 6

IX(IT _USI DEUEL IHERTIRL STIFFNESS FOR PRRN4 ?
DEFINE DNT-DR SN ? I_DNA-UNIONCDN'r)

SPINtDP_ K 27.5413 O. 0. 0. O. O.
IX(IT SSOL
RESET K'KSPN

Sx(iT GSF
RESET ERBEDo I

IX(IT KG
IXgT DEU

CNN_ 1 KG SPAR 36 i DK? SPRR 36 ?
SX(IT RUSS DEUEL INERTIAL STIFFNESS FOR PN_Iq 8

DEFINE _qT-_4 SR 8 $IDRR-UNI(IN(DNT)

SPIN:DflA K E?.5413 O. 6. I. O. 6.
IX(IT SSOL

RESET K - KSI_I

IX(IT GSF
RESET ENDED-!

SXQT KG
SXgT DCU

CHR_ I KG SP/IR 36 O OK8 SPNR 36 8
IXOT RUSS DEUEL INERTIAL STIFFNESS FOR PRRNI S

DEFINE DffT-_1 SR 9 Is_-UNIOfl(DflT)
SPINsDfI_ K E'?.5413 0. 0. O. 0. O.

IX(IT SSOL
RESET K -KSP11

IX(IT GSF
RESET ENDED- 1

IXOT KG
IX(IT DCU

CHN_ I KG _ 36 I OK9 SPAR 36 9
IX(IT RUSS DEUEL INERTIRL STIFFNESS FOR PRRNI 14)

DEFINE DRT-_q SN 10 IIDN_-UNION(DflT)
SPINxD/',_ K 27.5413 I. O. O. O. 6.

IX(IT SSOL
RESET K-KSPN

IX(iT GSF
RESET ERRED- !

IX(IT KG
_X(IT DEU

Cl.lf_ I KG SPRR 36 O _lO SPAR 36 le
IX(IT RUSS DE,EL INERTIAL STIFFNESS FOR _ 11
DEFINE Df_r.DN SN 11 IsDI_-Ut_IO_(DNT)

SPIN_DRA K 2?.5413 O. $. e. e. o.
IX(IT SSOL

RESET K-KSPN
IXQT GSF
RESET ERBED-I

IX(IT KG

t_XQT DCU
CHN_ 1 KG SP_ 36 I) DKtl SPAR 36 11

EAL runstream for developing the sensitivity matrix.
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Figure

SXOT _U$S DEUEL [flERTIAL STIFFNESS FOR PARRR 12

DEFINE DMT-DM Sfl 12 lxDflA-UNION(DRT)
SPIN:DR_ K 27.5413 O. i. e, e. e.
lXOT SSOL

RESET K,KSPN
;XQT GSF

RESET ER|EDo 1
tXOT KG

CxOT DCU
CHNt I KG SPAR 36 e DKI2 SPAR 36 12
ZXOT AUS$ DEUEL [NERTZ_L STIFFNESS FOI_ PARNI [3

DEFINE DflT,DR Sfl 13 I:DflA,U_IOit(_)
SPIN:DRA K 27.5'113 e. e. e. e. e.

tXOT SSOL
RESET K,KSPN

I[XOT GSF
RESET ERRED-|

IXOT KG

SXOT DCU
CHAH 1 KG SPAR 36 e DKI3 SPAR 36 13

IXQT RUSS DEUEL [NERTIAL STIFFNESS F(_ PARRII 14

DEFINE DflT-Dfl SH 14 lzDfl_-LItZON(DflT)
SPIN*DF_ K 27.5413 e. e. e. e. e.

IXOt SSOL
RESET K,KSIm

IXOT GSF
RESET EReED- 1

IXOT KG

SXOT DCU
(:HNt ! KG SPAR 36 e DK14 SPAR 3_ 14
*XOT _Jse DEUEL INERTIAL STIFFNESS FOR I_RAR 1S

DEFINE DKT-Dfl SR 1S I:DtlA-UflIOR(DffT)

SPINtI_RA K :)7.5413 O. O. O. O. e,
SXQT SSOL

RESET K-KSPN
IXOT GSF

RESET EnED- 1
IXQT KG

IXQT I)CU
CHAH 1 KG SPAR 36 O PKIS SPAR 3_ 15

SIXQT l_use DEUEL ZN£RTII_L STIFFNESS FOR PRRMI 16
SDEFIHE DIIT-DR SR 16 lzDR_oUfIlO_l(_q'r)

ISPlNsl_1_ K 27.5413 O. e, o, e, 0,
IIXQT SSO/
SRESET K-KSPN

ISXOT GSF
SRESET ERIL_- 1

IIXOT KG
IlXOt DCU

SCHAN 1 KG SPAR 36 O DKI6 SPAR 36 IS
SZXOT RUSS DEUEL ]NERTIAL STIFFNESS FOR F_ 17
IDEFZNE Dfl?-Dfl Sfl 17 I:DF_.UNION(DRT)
ISPIHIDfk_ K 27.5413 I. e. e. e. e.

IIXOT S$OL
IRESET K-KSPN

IIXGT GSF
IRESET EH2ED- 1

3c.- EAL runstream for developing

elxoT KG
llXQT OCU

$CHRfl 1 KG SPAR 31; e I)K17 SPRR 36 17
ZXOT RUS

DEFI UIqS-UIBR RODE 1 ! 3 ?
YK I-PROD ( [X(l i_S)
YK2-PROD (DI(;:' _qq5)

YK3-PROD(_3 Uflg)
YK4-PROD (DK4 _F_)

Y1CS-PROD (D((5 U_)
YKG-PROD (DK6 uRg)
VK?*PROD (D_? _Rg)

YKR-PROD (DKe UflS)
Y_S-PROD (D_9 UI_)

YKIe-PROD(DKIe U_g)
Y_IIopROD(DK11 Uflg)

YKI2*PROD(D_12 1_5)

YKI3-PROD(DK13 Uflg)
YKI4-PROD(DK14 URn)

YKIS-PROD(DKIS UF_ )
$_KIG-PROD(DK16 Uflg)

IYKI?-PROD(DK17 UflS)

SEeI-X'TVD(UIIS VKl
SE_?.. XTVD (URS YKE

SEO3-XTVD(URS YK3
SEe4-X_VD(UffS YK4

SEE_-XTYD(URS VKS
SEE_-x'rve ( UflS YES

SEe?- x'rVD (U_S VI(?

$1E_- XTVD(U_S YK8
SEeg.XTYD(UflS VKS

SE II-XTVD(U_ YKIO)
SEII'XTYD(UflS VKll )

$EI2-XTYD(URS YK12)
SEI3-XTYD(Uflg YK13)

S_|4-XTYD(URS YK14)
SEIS-XTYD(UR5 Y[IS)

eSEI6oXTVD(URS _1(16 )

|SEI?.XTVD(Ufl5 YKI?)
TRBL(NZ-S NJ-l ):sE16

T_BL(fl[.S HJ°l )_SE17
T_BL(N;,S H J-! )ISEI8

SENK-L_IZON(SEel SE_ SEe3 SEe4 SEeS SEe6 SEe?)
gee8 SEeS SEle SEll S£12 SE13)
_JE14 SE15 gEl6 gEl? S_i8)

SENe-SUfl (SINK SENg)
SXOT DCU

CH_ I SEN| AUg I I S£NS PATe e 1
IXOT _JS

_[FZ IAg-iA eTkJ _ 9_lg-UNION(IRg)
EFT Rflle-R_S ITil 2 lelRli.U_ZO_(RRle)
IXOT SR

RESET OUTL-2 HUUX-2 NU_Po_ NP_Ni-li G'31_.
OPER e e I l
SXQT _US

IR IT_I _ g,UNION(|9)
RR_S IT_I 2 18oUNIOfl(RII)

IXOT EXZT

the sensitivy matrix (concluded).

Figure

_×GT RUS

DEF[ DPA*2 DP SR I 1
DEF[ DPXR._ gPX REU I 1

RR-REC ]P(DPR )
RAX-PROD(RR DPXA)

RAXT-RTRR_(RAX)
RAX2,PROD(SRR R&XT)
SRR SM 1 I*UNION(RAX_)

DEF] IRg-l_ ITAI 2 9;ig.L_[ON(i_9)
DEF] Rflle,Rt_S ITAI 2 181RIS*UNZO_(_flIR)

SXOT Sfl
RESET OUTL-2 flUUX,_ HUDP-Z IIP'1_=18 G-386.
OP(R e e I 1

IXQT _US
IR IT_i 2 9.U_ION(19)

RRRS ITS! 2 18-UHZON(RI8)
IXOT DCU

PRINT I SRR
PRINT _ _ SR

PR]HT _ I)PX
IXGT EXIT

OR_Gir_AL PAGE IS

OF POOR QUAUTY

3d.- EAL runstream for revision of the covariance (weighting)
matrix.
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Figure e. -

_×OT SM

RESET OUT[..; > NUUX-2 NUDP-2 NPARA-18 G-3_.
OPER e e 0 1
SXQT NJS

TRBL(NI.I NJ-18)tSRR SflIJ.l 18zl.
DEFI DP$fl ;_ DPX REU
DPST-RTRNt( DPSfl )

TR|L(NI.E NJ-rE ) zDPCH
TRRN(SOUR-DPST ;LZR.I JLZR-II DSKIP-I SBRSE-O DBASE-O)

TRN_(SOUR-DPST ILlfl-t JLZfl.18 DSKIP-I $|ASE-O DI_3E-I)
DEF| DPO-DPLI
DPt_-S_Ifl(DPO-t. OPCH)
DPFR-SUM(SRR .1 Ol>SIq)

DPR[-RECIP( DPFR )
TRBL(HX-a H J-18) zRAOP

TRNt(_OUR-DPRE ILIfl.l JLIR-I8 DSI(IP-I SBASE-O DB_._E-O)
I"I_ft(SOUR.DPRE ILZfl.l JLIfl-18 DSKIP-I S|ASE.e DIM_SI[-I)

DPI_.-P_OD(RROP DPNE)

DPLI SII-UIIION(DI_k?. )
ZXOT (

RESET G-388.

IXQT [KS
XXOT K

IXQT RUS
mEW- SUfl ( I_P,2 RflAS)

IqDIF-SUFI(IIH[U-1. H.*-M)

SP1H:I_4_ K 27.5413 e. O. O. O. O.

ZXGT RSI
I_sl_r K-KSPN

ZXGT SSOL
RESET K-KSP_

_XQT GSF

RESET (FIIED-I
SXQT [G

IxQ'r N#S
KECG-SUR(KSPH KG)

ZXQT RSI
RESET K-KECG

SXgT EIG
I_SI[T [NLII,I II-Fl+_q K-KECG

SXQT _JS
RIG'RIGID(t )

I_ -PROD (fl',Rfl RIG)
G_-XTYD(RIG FI_)

GI'IUT • UNIOII( 386. GR)
RI_T-UItION(3116. RI_qS )
IXOT DCU

PRINT I GR
PRIK'r I GI_IT
Pltilt"r 1 RI,N,rr

I_INT I IA ITAI ," g
PRI_rr 2 $1:HSIPRIHT 2 DP

IXOT EXIT

O_IG_L_L P_L iS
OF POOR QUALITY

EAL runstream for calculation of frequencies of the
modified structure and recomputation of the change
limits for the next iteration.

i,i

0
Z
I.JJ

C_

Q::
LL

I--

(.9
Q::
<:
I--

<:
._J

(D
.--J

<:
(..)

O

I.-
,¢:
12:

I .I0

MODE 3
1.08 "*" MODE 4

MODE 5

1.06 -_- MODE 6

4- MODE 7

1.04 -.O- TARGET

1.02

1.00 _

0.98 , , , ,

0 1 2

ITERATION

Figure 4.- Results of modification.
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NUMERICAL STUDIES OF THE THERMAL DESIGN SENSITIVITY

CALCULATION FOR A REACTION-DIFFOSION SYSTEM WITH

DISCONTINUOUS DERIVATIVES*

Jean W. Hou and Jeen S. Sheen

Department of Mechanical Engineering and Mechanics

Old Dominion University

Norfolk, VA

SUMMARY

The aim of thls study is to find a reliable numerical algorithm to calculate

thermal design sensitivities of a transient problem wlth discontinuous

derivatives. The thermal system of interest is a transient heat conduction problem

related to the curing process of a composite laminate. A logical function which can

smoothly approximate the discontinuity is introduced to modify the system

equation. Two commonly used methods, the adjolnt variable method and the direct

differentiation method, are then applied to flnd the design derivatives of the

modified system. The comparisons of numerical results obtained by these two methods

demonstrate that the direct differentiation method is a better choice to be used in

calculating thermal design sensitivity.

I. INTRODUCTION

Hlgh-performance polymeric composites have been used widely in the aerospace

and automobile industries. Such materials are commonly composed of long or chopped

fibers embedded in the thermosetting resin matrix. Changes in physical and chemical

properties of such composite materials during the curing process are rather

complex. Thus, it is not a trivial task to properly design a cure cycle

(temperature and pressure profiles) for a curing process. The material should be

cured uniformly and completely with the lowest void content; the temperature inside

the laminate must not exceed some maximum value; and the curing process should be

completed within the shortest amount of time. In the past, most cure cycle

designs for newly developed composite systems are based upon the technique of trial

and error. Several simulation models [1-3] have been developed recently for curing

various epoxy matrix composites. This development represents a significant

advancement in computerizing the cure cycle design. An attempt [4] has been

made recently to incorporate thermal optimal design techniques with such

analysis capabilities to systematically establish the "best" curing process. The

research progress regarding the computational aspects of the thermal design

sensitivity analysis is reported in thls paper.

*The research reported here is sponsored by NASA Langley Research Center under NASA

Grant NAG-I-561.
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The derivative of the thermal response with respect to the design variable is

usually called the thermal design derivative or sensitivity. The information of the

design derivative is not only very useful for the trade-off design, but it is also

required for an iteratlve design optimization. The calculation of design

derivatives in thermal problems has attracted research interests in such areas as

deslgn of space structures subject to temperature constralnts [5], and chemical

process control [6,7]. The thermal system studied in this paper can be stated as a

heat conduction problem coupled with chemlcal-klnetlc reaction during the cure

process, while the temperature of cure cycle is considered as a design variable.

If. MATHEMATICAL FORMULATION OF CURING PROCESS

During the curing process, the temperature distribution T(x,t) and the degree

of cure a(x,t) of the resin inside the composite depend on the rate at which heat

is transmitted from the environment into the material. The heat conduction model

for a piled composite with its thickness 2h during the curing process can be found

as

5T 52 T

pc-_= k--
5x 2

with the boundary conditions,

5T (0 _t) = 0
_x

+ PHR& (I)

0 _t4T

(2)

T(h,t) = T (t), 0 (t(T
c

and the initial condition

T(x,0) = T (x), 0(x(h, (3)
o

where p is the mass density, c is the coefficient of heat capacity, k is the heat

conduction coefficient, and H R is the total or ultimate heat of reaction during the

curing process. The last term in equation (i), PHR_ , denotes the rate of heat

generated by chemical reaction which can be expressed by cure kinetics.

Two models of cure kinetics are investigated here. One is the chemlcal-klnetlc

reaction of Hercules 3501 during press processing [I]. The chemical-klnetlc

reaction can be determined in terms of the degree of cure, a, which is given

experimentally from reference [2] as

fl(a,T,t) = (KI+K2a) (l-a) (B-a), 04a<0.3

: { <4>
f2(a,T,t) = K3(l-a), 0.3<a

with the initial condition a(x,0) = 0 and the following definitions:

K 1 = AA 1 • Exp(-AEI/RT )

K 2 = AA 2 • Exp(-AE2/RT )
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K3 = AA3 • Exp(-AE3/RT )

where AAI, AA2, AA3, AE1, AE2, AE3, R and B are material constants, and T is K°

temperature. Note that the rate of cure presents discontinuity at ==0.3.

The second example is taken from the results of compression molding of a

polyester [3]. The degree of cure of resin in terms of temperature is given as

= (K1 + K2 _m) (I-_) n (5)

where m and n are constants, and K 1 and K2 are exponential functions of temperature.

Note that in equation (2), the temperature Tc(t ) on the surface of the piled
pre-pregs is called the cure temperature. The cure temperature can be controlled by

the processor and is considered as a design variable. Moreover, the performance

index of interest is the temperature uniformity qb which may be defined as the least

square of the deviation between the pointwise temperature and the averaged

tempera ture as

T h h

d)= f {f T 2 dx- (f T dx)2/h} dt (6)

o o o

Some observations of interest are mentioned here:

I. The state equations of the cure process are coupled with two state variables,

the temperature distribution T(x,t) and the degree of cure _(x,t).

.

3.

The nonhomogenous boundary value, Tc(t) , is the design variable.

The rate of cure, _ in equation (4), exhibits discontinuity, as does the last

term PHR_ in the equation of heat conduction.

The heat conduction problem stated in equations (I) to (3) can be simplified to

an equation of T(x,t),

_)2 _ T + (T+Tc) (7)pc -_ = k pc PHR&
_x2 c

with the homogeneous boundary conditions,

8'_(0, t)
8x -- 0, 0_t_T

T(h,t) = 0, 04t(T

(8)

and the initial condition,

T(x,0) = TO (x) - Tc(0), 0(x4h,

by introducing the following replacement of the temperature T(x,t):

(9)
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T(x,t) = T(x,t) + Tc(t) (i0)

It is no ted that the initial temperature T o(x) of the composite laminate is

identical with the initial cure temperature for most applications. Therefore,

equation (7) might have not only homogeneous boundary conditions but also a

homogeneous initial condition. Moreover, the design variable Tc(t ) now appears on

the right side of equation (7). In other words, the design variable is now involved

in terms of heat generation, instead of being a boundary condition. It is also

noted that the replacement of T(x,t) doesn't change the structure of the performance

index _, i.e.,

T h h

qb = f {f _2 dx- (f Tdx)2/h} dt (II)

o o o

In general, the cure temperatures recommended by resin manufacturers consist of

linear segments. As an example, the cure temperature recommended for the Hercules

3501-6 resin is shown in Fig. i. Consequently, the right side of heat conduction

equation (7) has discontinuous terms of pcT as well as PHR_. The term PHR_c

shows discontinuities in both x and t dimensions. The term pcTc, on the other

hand, is discontinuous along the t dimension only. Such discontinuities pose

numerical difficulties for calculating the design derivatives, especially, when the

time or the place at which these discontinuities occur is subjected to change due to

the perturbation of the design variable. It is easy.to see that the term PHR& is

of this nature. Note that the discontinuity of _ is determined by a state

variable%dependent jump condition at a(x,t) = 0.3. Thus, the discontinuity of the

term PHR_ will take place at the new critical time t and the new position x so

that _(x,t) = 0.3 for a perturbed state variable _. Also the discontinuous point

of the term pcT can be shifted, if the time interval of the junction point of
c

constant and variable temperatures of the cure temperature profile, such as T 1 in

Fig. i, is considered as a design variable.

III. LOGICAL FUNCTION MODELLING

Quite a few engineering examples whose state variables show discontinuities in

derivatives can be found in the multi-state control problems [8], and the mechanical

systems with intermittent motion [9, I0]. However, the derivative discontinuities

of those examples are associated with time dimension only.

The intermittent motion is characterized by the occurrence of nearly

discontinuous force and velocity caused by impulsive force, impact, mass capture,

and mass release. The optimal design problems of mechanisms with intermittent

motion have been discussed by Huang, Huag and Andrews [9]. Their method is based on

the identification of critical times at which discontinuities in forces or

velocities occur [8]. The overall time interval of analysis can be divided into a

number of subintervals based on those critical times. The jump conditions of state

variables are then employed in an adjoint variable approach to determine the

discontinuities of adJoint variables. The adjoint variables are then used for the

calculation of design sensitivity coefficients. In employing this approach, an

a priori knowledge of the critical times is required. The determination of the

critical times of jump conditions, however, may lead to a rather complex logic for
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digital computer programming. In order to avoid these complexities, Ehle and Huag

[i0] introduced a "logical function" to smoothly approximate discontinuities, and

then calculated the design derivatives by the standard adjolnt variable technique.

An example in their work shows that the proper selection of the sizes of the time

step and the transient zone used for discontinuity approximation is crucial to the

accuracy of design sensitivity calculation. However, making such a selection is

difficult. Nevertheless, the logical function approach is used in this study. The

reason is that _ is a function of time as well as spatial position. As a result,

keeping track of the _ discontinuity at every spatial position is a very difficult

task for numerical analysis.

As mentioned earlier, logical functions can be used to represent a sequence of

logical events. A logical function L(z,e) is a continuous function which smoothly

approximates a Heavlslde step function H(z) within a given region 0<z4e for a small

number e. The symmetrical step function H(z) is defined as:

0, z<0

1
H(z) = y, z = 0

i, z> 0.

The logical function employed here is given in reference [I0] as:

L(z,e) = 1 IzJ 2n+l + z2n+l

1 el2n+l e)2n+l2 izl2n÷l [iz_ -(z- ]

where n is an integer selected in order to ensure the continuity of the derivative

up to order d, i.e., 2n+l>d. The n is taken as I in thls study. The approximation

of the logical function is shown in Fig. 2. Note that the values of a logical

function L(z,e) are 0, 1/2 and 1 for z=0, e/2 and e, respectively, and the

transition width e defines the region of approximation. The value of the logical

function is exactly identical wlth the Heavlslde step function outside the

approximation region.

In using the logical function method, one is free to choose a wlde variety of

arguments that determine the transition point for a logical function. As an

example, the transition condition _=0.3 for the degree of cure can be used to define

a logical function L(0_-0.3,e) such that L(_-0.3,e) = 1 when _>0.3+e, and

L(0_-0.3,e)=0 when _40.3. Based on this definition, the logical function can be used

to compress the equation of cure kinetics into a compact form:

= fl " [i - L(_-0.3, _)] + f2 " L(_-0.3, E) (12)

Note that the above single equation of cure kinetics is the same as the original

equation over the entire tlme interval of analysis outside the transition period.

Furthermore, since the logical function is a smooth function of _, there is no

discontinuity in the _ of the preceding equation. Thus, the analysis of the design

sensitivity can be simplified to a great extent, because there is no need to monitor

the perturbation of _ discontinuity. Note that the value of _(x,t) in equation

(12) can be calculated by the linear combination of shape functions and nodal values

obtained by the finite element analysis. Similarly, the discontinuity in T can be
c

smoothed out in the same manner. Again, using the cure temperature profile
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indicated in figure 1 as an example, the first discontinuity at
expressed as

= a[l - L(t - TI, e)]c

t=T1 can be

(13)

It is then easy to consider the junction point T 1 as a design variable based upon

the above equation.

as

Finally, the heat conduction equation stated in equation (7) can be expressed

2

= k --+ g __(T,_,TI)pc
Dx2

k -- -

D2_

5x2
pc a • [I - L(t - TI, e)]

+ PHRf I • [I - L(_-0.3, e)] + PHRf 2 • L(_-0.3, e) (14)

for the cure cycle given in figure i. Similarly, the equation of the degree of cure

given in equation (12) can be rewritten here,

= f(T,a,T 1 )

= fl " [i - L(_-0.3, _)] + f2 " L(e-0.3, e) (15)

The finite element discretization is then introduced to convert the above

initial-boundary value equations into a set of first order differential equations:

[C] {T} + [K] {T} = {F({T}, {e})} (16)

and

[N] {_} = {G({T}, {_})} (17)

Quadratic and linear polynomials are used to interpolate the states of

temperature distribution and degree of cure, respectively. Note that the right side

vectors of the above two matrix equations are different. This is because the trial

functions for equations (14) and (15) are different.

The finite-element discretization can also be used to simplify the expression

for the performance index of concern into a single integral:
T

$ = f ({_}T [C] {T}- {_}T {p} {p}T {T}/h) dt (18)

o

where the [C] is same as the one defined in equation (16)_ and the components of the

vector {P} are obtained by integrating the quadratic shape functions of temperature.

This set of equations (16) and (17) is then solved simultaneously by a

numerical integration code called DE [ll]. The DE program is one of predictor-
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corrector integration algorithms using the Adamsfamily of formulas. The truncation
error is controlled by varying the step size and the order of the method. The DE
program has the capability to handle moderately stiff equations which often occur in
the problems of chemical kinetics. To preserve the accuracy of analysis, the
temperature distribution and the degree of cure are subjected to the same numerical

error tolerance during the numerical integration.

IV. DESIGN SENSITIVITY ANALYSIS

In general, there are four ways to calculate the thermal design derivatives,

i.e., the finite - difference method, Green' s function approach, the direct

differentiation method and the adjolnt variable technique. The last two are often

mentioned in the literature [12-15]. Both methods lead to a set of linear equations

that have a structure similar to the original system.

The computational efforts regarding the direct differentiation method and the

adjolnt variable method depend mainly on the numbers of constraints and design

variables of concern. The direct differentiation method requires the solution of a

differential equation for each design variable; while the adjolnt variable method

requires the solution of an adjolnt equation for each constraint. Consequently, the

direct differentiation method is more efficient in calculating the design

derivatives than the adjolnt variable method when the number of design variables is

less than the number of constraints, or vice versa.

It is known that the direct differentiation method provides equations of design

derlvatlves which can be integrated forward, Instead of backward to solve the

adjolnt variables. The equations of design derivatives can, therefore, be solved

simultaneously with the original system of equations and are subjected to the same

numerical error tolerance. Furthermore, the approach of direct differentiation

provides, without extra efforts, the time histories of design derivatives of

functlonals and state variables. This information can be used by a designer to

reconstruct the design space. One may check this information to see whether a

design variable of concern contributes to the perturbation of the performance index

consistently over a long or short period of time. As an example, the time histories

of design derivatives of various pollutants' concentrations with respect to emission

and meteorological parameters are studied and used in reference [16] to improve the

mathematical model of air quality. In this study, the direct differentiation method

and the adjolnt variable technique, in conjunction with the logical function method,

is used for the calculation of thermal design sensitivities.

The calculation of design derivatives using the direct differentiation method

is straightforward. For example, let T 1 in Fig. 1 be the design variable. The
direct differentiation of equations (14) and (15) yields

_, D2_,

pc "_" = k_-
bx2

pc a L'(t-T I, e)

Dfl 5fl

+ PHR(_-&-- _' +-- T') • [I - L(_ - 0.3, e)]
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and

Df2 Df2

+ PHR(_--_' +- 3') 5(,o:-0.3, e) + pS d__L_L_, • (f _ f )
[53 R da 2 i

Df I Df 1

_' = (-_- a' +--T') • [I - L(a - 0.3, e)]

(19)

5f2 5f2 -

+ (_--_' +--T') • L (_- 0.3, e)

dL a,
+ -_ (f2 fl )

(20)

where the prime indicates the design derivative with respect to T I. The derivative

of the logical function dL/d_ is an approximation of a delta function which can be

derived from the definition of the logical function L. From equations (8-9) and the

initial condition of _(x,o) = 0, the boundary and initial conditions for design

derivatives, T'and _', can be derived as

DT' (o, t)

_x = 0, 0_t_T
(21)

and

T'(h,t) = 0, 0(t4T

T'(x,o) = - T '(o), 04x4h
c

(22)

='(X,O) = 0 , 0(x(h

where T' (o) is usually zero unless the initial control temperature T '(o) is
c c

considered as a design variable. With these boundary and initial conditions, the

last two c_upled linear equations can be solved numerically for the design

derivatives T' and _'.

Based on the same finite element discretization as used in solving the original

system, equations (19) and (20) can be converted into a set of linear ordinary

differential equations:

[C] {3'} + [K] {3'} = {H({T}, {_}, {3'}, {_'})} (23)

and

[N] {_'} = {Q({T}, {_}, {T'), {_'})} (24)

Note that the coefficient matrices of equations (23) and (24) are similar to those

of equations (16) and (17). However, {T} and {_} appear in equations (23) and
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(24). Thus, the numerical integration of equations (16) - (17) and (23) - (24) can

be performed simultaneously so as to maintain_ equal accuracy between state

variables ((T}, {_}) and design derivatives ({T'}, {a'}). The DE program,

mentioned previously, is employed as an integrator to obtain the numerical results

of design derivatives.

The values of the design derivative of temperature {T' } can then be directly

substituted into the following equation to calculate the thermal design derivative

of the performance index:

T

+' =2f

o

{_}T [C] {T'}- {_}T {p} {p}T {_,}/h) dt (25)

The above equation is derived from equation (18) by using the direct differentiation

me thod.

Regarding the computational efficiency of the direct differentiation method, it

is worthwhile mentioning two notes here:

i. Because the coefficient matrices of {T'} and {_' } are identical to those

of {T} and (_}, the triangular factorizations of matrices [C] and [M] need

to be done once only. The calculation of {3} and {_} can be carried out by

back substitution for each of design variables.

. Compared to the original system equations, the right side of equations for

computing {7'} and {_'}, such as equations (23) and (24), may have

different frequency contents. Thus, to maintain the same numerical

accuracy, a smaller time step At may be required for the DE program to

solve the pairs ({7}, {_}) and ({T'}, {_'}) simultaneously.

A major step in the adjoint variable method is deriving the adjoint equations

to solve the design derivatives of equations (18) in terms of state and adjoint

variables. In order to do so, one may extend the performance index _ of equation

(II) as, using T 1 as a design variable,

T h h _
_b = f f ([T-f _ dx] T} dx dt

o o o

T h h-

T dx] T} dx dt

o o o

T h _)_ _2_

+ f f {k [pc-_- k---
o o 5x2

g(T,o,TI)] +

Da f(T TI)]} dx dts '='
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where _(x,t) and s(x,t) are two arbitrary functions. Note that the last integral is
zero because of state equations (14-15). Taking the design derivative of the above
equation with respect to TI and integrating by parts, it follows that

T h
bg _ bf

42'= f f (- k ()rl s -_I ) dx dt
o o

T h _)k 52 k

+ f j" [- pc-_- k---
o o _x2

k bg 5f h _ _
-- - s -- + 2(T-I _ dx)] T' }dx dt

o

T h
_s

+ f f {[-
o o

Df 5g 0_'}dxdt

T

+f
o

5T' bk_, Ih(- kk--_ + k _ ) dt
o

h

+f
o

T(pckT' + s=' ) dx

o

(25)

Note that the only two unknowns in the above equation are the design

derivatives T' and 6'. One may now specify the variables k and s in such a way that

all terms associated with T' and =' are dropped. This can be accomplished by

introducing the following adJoint equations for k and s:

and,

Dk 52k 5g 5f
0 = pc _+ k--+ k + s ---

Dx2 BT BT

_f
_s _g+ s-

O =-_+ k _ _

with the terminal conditions,

h __

T dx)

o

(26)

(27)

k(x,T) = O, O(x(h, (28)

S(x,T) = 0

and the boundary conditions,

_k t) = 0(o,

O¢x¢h, (29)

O_t_T, (30)

k(h,t) = O, 0¢t¢T, (31)

Then, the combination of equations (25 - 31) provides a simple formula for the

design derivative of the functional,
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T h
+,=/ /

o o

_g _Sf

(-k-_l- S _i ) dx dt

(32)

h

+/
o

!

pc k(x,O) Tc (0) dx

Equation (32) shows that the design _derivative of qb , namely, ,_' is a

functional of the state variables a and T, and the adjoint variables k and s.

Since the adjoint variables of equations (26 - 27) form an "adjoint" diffusion-

reaction system similar to the original one, the same numerical scheme used to solve

the state variables _ and T can be extended here to compute the adjoint

variables s and k. For instance, using the shape functions of _ and T in equations

(16 - 17) to interpolate the adjoint variables k and s obtains the following matrix

equations for nodal values of k and s,

[C] {_} = [K]{k} + {R ({T}, {o_}, {k}, {s})} (33)

[N]{s} = {S({T}, {=}, {k}, {s})} (34)

with the proper boundary and terminal conditions.

In general, the adjoint equations cannot be solved simultaneously with the

original system equations. Because of the terminal conditions, the adjoint

equations can be solved by either the backward integration along the real-time t-

axis directly or the forward integration along the artificial time t*-axis by

changing the independent variable t to t* as t* = T-t. However, both approaches

require the solutions of the original system equations prior to solving the adjoint

equations.

In the derivation of design derivatives, it has been assumed that T(x,b,t)

and m(x,b,t) have enough regularity in the time-spatial domain and in the design

space.

V. NUMERICAL EXAMPLES AND RESULTS

Four examples are presented in this section to discuss the numerical accuracy

of the logical function approximation and the methods for calculating the thermal

design derivatives. The accuracy of the thermal design sensitivity analysis is

checked, based on the fundamental definition of design derivatives which states that

they can be approximated by the finite difference. In other words, it is

mathematically true for a small perturbation of design variable AT so that:
C

_ d+ ~ A+
qb' -

dT AT
c c

The perturbation of the design variable AT is defined as the difference between a
C

perturbed design Tc* and the nominal design Tc, i.e.,

AT =T -T
C C c
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As a result of the above definitions, it follows that

A+ - + (Tc ) - +(rc)

= +' • _ (35)
c

The above equation provides a simple means to check the accuracy of the design

sensitivity analysis.

The first example presented here deals with the curing process of compression

molding (equation (i) and (5)) in which the cure temperature of the process is

assumed to be a constant temperature. The nominal cure temperature is taken as

4230K, and there is no discontinuity involved. According to the approximation

defined in equation (35), the results shown in figure 3 demonstrate the validity of

the direct differentiation method for the thermal design sensitivity analysis.

The second example, on the other hand, refers to the curing process of press

processing (equation (I) and (4)) in which a jump condition appears in the

derivative of the degree of cure. The profile of the cure temperature is assumed to

be Tc(t) = bo + b It where the initial temperature b o and heating rate b I are

considered as design variables. The nominal values of b o and b I are taken as

2900K and 1.70K/sec . The changes of the performance index with respect to the

values of bo and b I are calculated by using the direct differentiation method as

A@ = -0.3158-Ab
o

A_ = 2.6336"Ab 1

However, using the adJoint variable technique obtains

A_ = -0.0367.Ab
o

Adp = 8.099.Ab I

The results indicated in Tables 1 and 2 show that the direct differentiation method,

in conjunction with the logical function approximation, performs very well even for

a thermal problem with discontinuous derivatives. It is also shown in Table 2 that

the relation between the performance index and the heating rate b I is highly

nonlinear. In this example, the transient width e of equation (15) is defined as

10 -4 second which is the smallest time step size allowed in the DE program.

Next, the thermal design derivative of the compression molding is studied, with

the cure temperature being given in figure 4. The value of TI, where the rate of

the cure temperature changes, is considered as a design variable. In this study,

the nominal value and the perturbation of T 1 are taken as 40 seconds and 1 second,

respectively. The discontinuity of T at T I can be smoothed by equation (13). The
c

upper curve shown in figure 5 is obtained by using the direct differentiation method

based on equation (13). On the other hand, the lower curve displayed in figure 5 is

obtained by using the following expression for the design derivative of T :
c
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d_c t _ T 1

The design derivative of T at the junction point, TI, is a delta function which is
c

not included in the above equation. The results in figure 5 clearly show that the

design derivative of the jump condition should be considered in the sensitivity
calculation.

It is easy to obtain the time histories of design derivatives of state

variables using the direct differentiation approach. Using this information, the

processor can investigate whether a design variable of concern contributes to the

change of system performance consistently over a long or short period of time so as

to reconstruct the design space. For example, figures 6 and 7 show that the change

of the design variable T 1 has a significant effect on the temperature and the degree

of cure on the surface of the pre-pregs when the time is 42 seconds.

The distribution of thermal design derivatives =' and T' along the thickness of

the pre-pregs is shown in figures 8 and 9 for different instants of time. It is of

great interest to see that the most significant changes of T and a due to the change

of the junction point T1 happen around 80 seconds and at 2.5 mm from the surface of

pre-pregs.

In this example, the various values of transient width, regioned from 10-2

second to 10-4 second are chosen to be used in the logical function approximation.

The sensitivity results obtained accordingly are essentially the same. This

indicates that the value of the transition width in the range of study has no

significant effect on the accuracy of the sensitivity analysis. The transition
width e is taken as 10-3 second in the results reported in figures 6 to 9.

Finally, the cure temperature of the press process studied herein is again the

same as the one shown in figure I. With I00 minutes as the nominal value, T 1 is
considered as a design variable. Thus, both equations (12) and (13) should be used

to approximate the jumps in _ and _ smoothly for the thermal problem of the press
c

process. The results of sensitivities calculated by the direct differentiation

method are in good agreement with the actual changes calculated by the finite

difference method as shown in figure I0. The transition regions used in this

example are 10-4 second and 10-2 second for equations (12) and (13), respectively.

VI. (X)NCLUSIONS

It is quite common to have empirical formulations appear in the state equations

modelling the composite curing process. These empirical formulations may introduce

discontinuous state derivatives into the state equations. A simple method which

uses the logical function approximation is introduced in this paper to perform the

thermal design sensitivity analysis for such state equations.

Based on the numerical study, it is obvious that the direct differentiation

method provides more accurate results than the adjoint variable method does. The

direct differentiation method also yields the time histories of the design

derivatives. In addition, the information of design derivatives of the pointwise
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constraints can be obtained by using the direct differentiation method without extra
cost. It is thus concluded that for the transient problem in this study, the direct
differentiation method is superior to the adjoint variable technique in terms of
accuracy and physical interpretation of results•
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TABLE I DESIGN SENSITIVITY RESULTS FOR DESIGN

VARIABLE bo IN EXAMPLE I

bo $ A_ (Direct Diff) (Adjoint)

290.0 26.217 ....

289.9 26.248 0.0315 0.0316

289.8 26.280 0.0628 0.0632

289.7 26.311 0.0940 0.0948

289.5 26.313 0.1559 0.1579

289 26.525 0.3077 0.3157

0.0037

0.0073

0.0110

0.0183

0.0367

TABLE 2 DESIGN SENSITIVITY RESULTS FOR DESIGN

VARIABLE b. IN EXAMPLE I
L

bI $ A_

_i. Ab 1

(Direct Diff.) (Adjolnt)

.700 26.217 ....

.702 26.222 0.00497 0.00527

.706 26.230 0.01312 0.01580

.708 26.233 0.01633 0.02107

.710 26.236 0.01898 0.02637

.730 26.234 0.01713 0.07901

.750 26.189 -0.02805 0.13168

.800 26.962 -0.25457 0.26336

0.01620

0.04859

0.06479

0.08099

0.24297

0.4050

0.8099
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SUMMARY

This paper presents methodologies for greatly improving machine structural dynamics by using design sensitivity

analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are

described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then,

design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic

structural members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Cases (1) and (2)

correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design

variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed in this paper.

1. INTRODUCTION

In usual design optimization of machine structures, a framework pattern for the complete structure is definite and

initial design variables which are usually tentatively given are modified so that the objective function is improved. In such
design optimization, design sensitivity coefficients of evaluative parameters can be used for finding the most preferable design

change directions. However, improvement of the product performance or characteristics, which is attained under the condition

of a constant framework and using poor initial design variables, often is not satisfactory. Furthermore, machine structural

dynamics depend on characteristics at many natural modes, and on damping characteristics which are yet unclear. Hence,

the relationships between the machine structural dynamics and design variables are very complicated. Application of design

sensitivity analyses to optimization of structural dynamics is not simple.

This paper proposes design decision making methods of structural dynamics which intend to greatly increase product

performance of machine structures. First, evaluative parameters of structural dynamics are listed, and design sensitivity co-

efficients of the parameters are derived. Next, the relations between the design sensitivity coefficients and the parameters of

displacement, internal vibratory force, and energy distributions are analyzed. Based on the analyses, priorities among the

evaluative parameters are clarified. Then, using the design sensitivity analyses and the relations between parameters, design

improvement procedures of structural dynamics are constructed for each of the three cases: (1)addition of elastic structural

members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Addition of elastic structural

members and mass elements on the original design is utilized for decreasing the static compliance and for balancing the fre-

quency response over the frequency range, respectively. Substantial changes of joint design variables are made for balancing

the frequency response and for increasing damping ratios. Finally, the effectiveness of the procedures is demonstrated by
applying them to a structural model.

2. EVALUATIVE PARAMETERS FOR STRUCTURAL DYNAMICS

AND INFORMATION FOR DESIGN CHANGES

A machine structure has point E where vibrational (excitational) force or static force generates, and point G where

vibrational or static displacement produced by that force causes reduction of the machine performance. The transfer function

of a vibrational system defining the relation between the input force at point E and the displacement output at point G is

expressed as the "frequency response".

Fig. 1 shows an example of the receptance frequency response R(=D/F) which is obtained from the displacement D

at point G caused by the harmonic force F at point E.

According to the requirements for the product performance, the following changes of the characteristics are required:

PA__f_K;I PA.G£ BLANK NOT FILMED
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(1) decrease the static compliance fs,

(2) increase/decrease a natural frequency COn,

(3) increase the damping ratio _'n at a natural mode,

(4) decrease the receptance value R n at a natural mode.
In the case of machine tools, the maximum receptance value Rn.ma x at the cutting point is evaluated for increasing

the stability against regenerative chatter (refs. 1 and 2), and natural frequencies are evaluated for diminishing the forced vibra-
tional troubles. Even in other machines' cases concerned with transient dynamic response, some treatment among (1) through

(4) can be applied. Hence, the "frequency response" is the most fundamental characteristic of structural dynamics.

In the following nomenclature, "direct" means that the point and direction of the exciting (or static) force are the

same as the pick-up point and direction of displacement, while "cross" means that those points and directions are not the
same.

2. 1 Evaluative Parameters of Frequency Response

The equation of motion in a linear vibrational system having multiple-degrees of freedom is expressed by the following

equation:

[M]{X} + [C]{:_} +i[H]{X} + [K]{X} = {F} (1)

where [M], [K], [C], and [HI are the mass, stiffness, viscous damping, and hysteretic damping matrices, respectively; where

{X} and {F} are the column vectors representing the displacements and the forces; and where i designates the imaginary
unit.

The angular natural frequency at an arbitrary nth natural mode is denoted as COn- For easy expansion of equations, a
displacement eigenvector (Xn} at each of the natural modes is normalized as follows:

{Xn} T[M] {Xn} = 1 (then, (Xn} T [K] (Xn} =COn 2 )

The equation showing the relation between
ceptance matrix [R(co)] as follows:

{X} and {F} at a given angular frequency co is expressed using re-

{X} = [R(co)] (F) (2)

The receptance matrix under the assumption of the proportional damping vibrational system is obtained using the

orthogonality relations of displacement eigenvectors:

[R(CO)l = _ [fml ] (3)

m=l 1 - (--_-m)2 + 2i _¢om _'m J

where [fm ], tom, and _'m are respectively the modal flexibility matrix, angular natural frequency, and damping ratio at the

mth natural mode. The modal flexibility matrix (ref. 3) is obtained using the displacement eigenvector { Xm ] and stiffness
matrix [K] as follows:

{Xm}{'Xm)T
[fm] - (4)

{Xm}T[K] {Xm}

Damping ratio _'m at the mth natural mode is obtained for a viscous damping vibrational system as follows:

corn{ Xm/T[ C] {Xm./

2{Xm}T[KI { Xm}
(5)
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When no other natural frequencies having large modal flexibility exist near the nth natural frequency, the receptance value

at the nth angular natural frequency, COn, is approximated from equation (3) using the following equation:

i[fn]
[R(COn)] --_ + _,

2_-n m=lman - [fm] 11 - ( COn )2
- Cam -

(6)

Since [R(o)] is equivalent to static compliance [fs] by substituting zero for co in eq. (3), the following relation is
established between the modal flexibility matrix, [fm], and the static compliance matrix, [fs]-

[fs] = m_=l [fml (7)

By selecting diagonal elements at the j-row and j-column of matrices [fs] and [fm] in eq. (7), the following relation is ob-

tained (ref. 3).

fs(j, j) = m_=lfm (j, j) (8)

Since the values of fm(j, j) are always positive, the relation in eq. (8) means that the summation of fm(j, i) at all natural modes
is equal to the value of static compliance fs(j, j).

2.2 Design Sensitivity Coefficients of Evaluative Parameters (ref. 3)

The design variables are denoted by a vector b = { bl, b2, • • •, bN } x, where N is the number of design variables.

Design sensitivity coefficients, OCOn/Ob, and a { Xn } lab of an angular natural frequency, COn, and a displacement eigenvector,

{ Xn }, with respect to a design variable vector, b, are obtained by applying the orthogonality relations of displacement eigen-

vectors to the eigenvalue equation of motion partially differentiated with respect to b, as follows:

aCOn _ 1 aCO_ 1

ab 2COn ab 2COn
"{ Xn }'T - a[K]t_ - CO_--_ ] {Xn } (9)

a [K] _ CO_0 [M] ] {Xn ] {XmI ]

a {'Xn}_ 1 a[M] {XmlT[ 0---g- ab

{Xn}T--{Xn} {Xn} + _ -5- .AFT f (10)
Ob 2 ab m=l

man COn - Cam

Using equations (9) and (10), design sensitivity coefficients of modal flexibilities are derived from eq. (4):

a[fn] 1
4

ab COn
[Xn} IXn T {Xn}T a[K]_{xn}

Ob

i a [K] _ CO2n3 [M] ]

{Xm}T [ ab (11)1 . -- _ ]{Xn} [{Xm} {Xn} T+ {Xn} {Xm} T]

2
+ CO2n m_=l COn2 - COrn

man

Similarly, design sensitivity coefficients of damping ratios _n for a viscous damping vibrational system are derived from eq. (5)
as follows:

a_'___nn.= 1 _ 1 aCO2n { Xn }T [C][ Xn}

ab { Xn } T [K] { I n} [ 4COn 8b
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a{Xn} T 1 a[C]

"l'O3n 0b [C] {Xn} +--_'-b) n {Xn} T {Xnlab

0{Xn}T }- 2_'n ab [m] {Xn} - _'n {Xn} X a[m]Ob {x.} 92)

Design sensitivity coefficients with respect to fundamental structural elements of spring elements, concentrated mass
elements, and damping elements are obtained from eqs.(ll) and (12).

(i) Spring element

Spring stiffness k of a spring element at point J (for example, a joint) in the machine structural model is considered

as a design variable. The design sensitivity coefficient of the direct modal flexibility fn(c, c) at the nth natural mode at point
C is:

0fn(C, C) 2 ® fm(C, J) " fn(C, J)

0k - fn(c,J) + 2 mZ=l( Wn2 )
mC:n --- 1

,Om

(13)

where fn(c, J) and fm(c, J) are the cross modal flexibilities at the nth and the mth natural modes, respectively. The design
sensitivity coefficient of the damping ratio at the nth natural mode is:

0_n _n

0k 2
fn(J, J) (14)

where fn(J, J) is the direct modal flexibility at point J.

(ii) Concentrated mass element

The mass, MI, of a concentrated mass element at point I in a machine structural model is considered as a design variable.

The design sensitivity coefficient of the direct modal flexibility fn(c, c) at point C is:

Ofn(C'C)oMI -26°2nfn(C, I) m_=l(_ fm(C,I)Wn2 )

m_n 1 - --
2

03 m

(15)

(iii) Damping element

In a viscous damping vibrational system, the design sensitivity coefficient of the damping ratio with respect to viscous
damping coefficient c of a damping element at point J is:

0_n _n

0c 2
fn(J, J) (16)

2.3 Information of Energy Distributions

2.3. 1 Relationships between changes of natural frequencies and energy distribution rates (ref. 4)

It is assumed that the stiffness matrices at subsystems s and r of the machine structure are [Ks] and [Kr] , the mass
matrices at subsystems s and r are [Ms] and [Mr], and the displacement eigenvectors corresponding to subsystems s and r are

{Xn} s and { X n } r. Now, the values of the stiffness matrix [Ks] at subsystem s increase (or decrease) a times to become

[K's], and the values of the mass matrix [Mr] at subsystem r increase (or decrease) /3 times to become [M'r] as shown in
eqs. (17) and (18):

[K;] = [Ks] +a[Ks] (17)
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[Mr] = [Mr] +/3[Mr] (18)

a and /3 being small values. The variable component dcoZnof the square of an angular natural frequency 6% is obtained as
follows:

a {Xn} sT [Ks] {Xn } s - /3C02n { Xn ) rT [M_] {Xn } r
dco2n = (19)

{ Xn } T [M] {Xn }

The following equation is obtained multiplying both sides of eq. (19) by 1/co2n:

dco2n ot {Xn} s T [Ks] {Xn} s-/3co2n {Xn} r T [Mr] {Xn} r

{X.) xco2n con [M] { X n }
(20)

2In eq. (20), {Xn }s T [Ks] {Xn} s and con {Xn} rT[Mr] {Xn} r are respectively twice the potential energy (strain energy)

at subsystem s and the kinetic energy at subsystem r in the initial structural design. Hence, those have positive values.
co2n{Xn} T[M] {Xn} is twice the maximum kinetic energy in the complete structure which also has a positive value.

The following rule is established from eq. (20): when the design change is conducted so that the rigidity is increased

(that is, ct has a positive value) / decreased (that is, a has a negative value) at the member or the element which has the larger

potential energy distribution, or the mass is decreased (that is,/3 has a negative value) / increased (that is,/3 has a positive value)
at the member or the element which has the larger kinetic energy distribution, the natural frequency increases / decreases

more effectively.

2.3.2 Relationships between design sensitivity coefficients and energy distribution rates

The maximum potential energies stored in the whole machine structure and in the spring element with spring stiffness

k at point J at the nth natural mode are denoted as VTn and Vjn , respectively. The design sensitivity coefficients of the

natural frequency con and the damping ratio _'n at the natural mode with respect to spring stiffness k have the relation with

the potential energy distribution rate, Vjn/VTn , as shown in the following equations.

0COg -- COg . Vjn

Ok k ( _ ) (21)

O_'n _ _'n ( VJ____o__n) (22)

Ok 2k VTn

A similar relation for the modal flexibility at point C is derived when the modal flexibility at a natural mode is far

greater than that at any other natural mode (ref. 3):

Ofn(C,C) ___ fn(C,C) . Vjn

Ok k ( _ ) (23)

In this case, the modal flexibility at the natural mode can be decreased by increasing the spring stiffness of the spring element

having the high potential energy distribution.

2.4 Information of Static Displacement and Internal Vibratory Force

(i) Static displacement

It is assumed that a machine structural model is installed in a hypothetical system T which is filled with a substance

having a sufficiently small rigidity, as shown in Fig. 2. Now, two points, P1 and P2, are chosen on the machine structural

model, and between the two points a thin circular tube (or a thin square bar) is conceived. Then, it can be considered that

a circular tube (or a square bar) member exists between points P1 and P2.

When the evaluative parameter is the direct static compliance fs(c, c) at point C, the design sensitivity coefficient
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of fs(c, c) with respect to the spring stiffness kp in the axial direction of the member between points Px and P2 is obtained
as follows:

Xc •(Xp, - Xv_) )5 - fg(c, P)Ofs(c,c) _ ( = (24)
Okv 2V s

where Xc is the relative displacement between points A and B caused by the static force at point C, Xp, and Xp2 are the
displacements at points P1 and P2 in the axial direction of the member between points P_ and P2, and Vs is the total strain

energy of the structural model at the displacement state; fs(c, P) is the cross static compliance between points C and P. As

understood from eq. (24), the design sensitivity of the direct static compliance fs(c, c) with respect to a hypothetical spring
between two points having the largest relative displacement is greatest. Hence, the displacement distribution on the machine

structural model can be used as the information for adding an elastic member when the static compliance is required to be
decreased.

(ii) Internal vibratory force

When the internal vibratory force at a structural member or a joint is small, it can be understood that the member or

the joint has a small effect on the vibrational characteristics. If the force is negligibly small, removal of the member or the

joint may have negligible influence on the dynamic characteristics.

On the other hand, when the internal vibratory force Fj is great at a joint, the following two cases exist:
(1) the potential energy distribution rate at the joint is great,

(2) the potential energy distribution rate at the joint is small.

In case (1), the joint has a great effect on the vibrational characteristics, and even small changes of the joint design variables

bring about a great change of the characteristics. In case (2), such small changes of the joint design variables cause little change
of the vibrational characteristics. Great changes of the joint design variables are necessary for a great change of the character-
istics.

The relation on the frequency domain between the excitational input force F E and the internal vibratory force Fj at a

joint similar to the relation between the excitational input force and the displacement shown in eq. (3), is obtained as follows:

Fj hEj m

-- (co) = _ (25)
FE m=l O9 co

1 - (-)2 + 2i--_'m
¢.0m ¢.0m

where hEj m is the modal internal force coefficient at the mth natural mode. The value of hEj m is subject to very little change

due to variations in damping. Hence, values of hEj m can be used for relatively evaluating magnitudes of internal vibratory
forces.

Spring stiffness kj of a spring element at a joint of a machine structural model generally has the relation with the

angular natural frequency co n at the nth natural mode and the modal internal force coefficient hEj n of the spring element as

shown in Fig. 3. Case (1) corresponds to the design at (hypothetical) point Q within the region S, while case (2) corresponds

to the design at (hypothetical) point H within the region T.

It can be understood from Fig. 3 that a joint spring element having a great internal vibratory force but a small potential

energy distribution rate has a great latent effect on the vibrational characteristics, although the value of the design sensitivity
coefficient at that design point is small.

2. 5 Considerations on the Evaluative Parameters and Information for Design Improvement

The following concluding remarks are obtained for the evaluative parameters:

(1) As can be understood from eq. (8), the static compliance fs has a direct influence on the modal flexibility values
at natural modes.

(2) As can be understood from eq. (11), the design sensitivity coefficient of modal flexibility is influenced by the

characteristics at many other natural modes. This fact means that the modal flexibility fn is determined by the systematic

balance over the complete structure. Hence, the modal flexibility needs systematic analyses.

(3) As can be understood from eq. (14), the design sensitivity coefficient of the damping ratio at a natural mode does

not include the influence of characteristics at the other natural modes. In an approximate sense, the damping ratio at a natural
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mode can be changed by adjusting only the characteristics at the natural mode.

(4) As can be understood from eq. (9), the design sensitivity coefficient of natural frequency _,3n does not include
the influence of characteristics at the other natural modes.

Higher priority of evaluation must be given to the evaluative,parameters which need systematic analyses. If evaluative
parameters which can be determined by the local effect are fixed before the systematic evaluation, a great improvement of

the product performance cannot be expected. From the above consideration, priority for evaluation of the frequency re-
sponse should be given in the order of (1) fs, (2) fn, and (3) S'n and _n.

Features of other information for design improvement such as energy distributions, static deformation distributions,

and internal vibratory forces are as follows:

(a) In design changes based on energy distributions, it is not necessary to define a specific design variables. Parts of

the structure which need increased rigidity or decreased weight can be macroscopically grasped. In usual design practice,
first of all, it is required to know where the weak points (regions) in the structure are. In this case, evaluations based on

energy distributions (refs. 1 and 2) are effective.

(b) The static displacement distribution can be used as the information for adding elastic structural members.

(c) The magnitude of the internal vibratory force at a natural mode indicates the degree of influence of the structural

member or the joint on the vibrational characteristics. That can be used as a sort of sensitivity information.

3. STRATEGIES FOR GREATER IMPROVEMENT OF STRUCTURAL DYNAMICS

In usual design problems, many characteristic and evaluative factors often interact mutually. The relationships between

design variables and evaluative factors are very complicated. When the optimum design is required for such design problems,

many local optimum solutions often exist in the feasible design space. Therefore, it is very difficult to obtain a design solution

which brings about great improvement of the product performance. Table 1 shows the procedures which have been developed

for solving those problems. Based on the clarification of competitive and cooperative relationships between characteristics,
the procedures are divided into three phases as shown in Table 1 (ref. 5).

In the following, some technical strategies for greater improvement of structural dynamics will be described. Addition

of elastic members in Section 3.1 can be used in the procedures of phases 1 and 2 in Table 1 ; addition of mass elements in

Section 3.2 can be used in the procedures of phase 2 in Table 1 ; and substantial changes of joint design variables in Section

3.3 can be used in the procedures of phase 3 in Table 1.

The improvement or modification of receptance values is most difficult in structural dynamics. Hence, characteristics
related with the receptance frequency response will be mainly discussed.

3.1 Addition of Elastic Structural Members

In the procedures shown in Table 1, first of all, the static compliance is minimized. When sufficient reduction of the

static compliance cannot be attained by changes of design variables (such as cross-sectional dimensions of the structural mem-

bers), addition of new structural members are useful only if change in the framework is possible.

The procedures for decreasing the static compliance fs(c, c) by addition of an elastic structural member are as follows:
Step 1. Detect points P_ and P2 having a negative value of the right side part of eq. (24) of which the absolute value is

maximum in the feasible region of the machine structural model.

Step 2. Define a thin member region between points P1 and P2, and equalize the Young modulus of the member
element with that of the other structural members.

Step 3. Repeat the search for optimum cross-sectional design variables until the objective function converges. At each

iteration of the search, the locations of points PI and P2 are slightly moved so that the right side part of eq. (24) has the

greatest negative value.

When the objective is to minimize the direct modal flexibility fn(c,c) at the nth natural mode at point C, eq. (13)
can be used as the design sensitivity coefficient with respect to the spring stiffness kp in the axial direction of the hypothetical

member between points P1 and P2. The forementioned procedures for the static compliance can also be applied for minimiz-

ing the modal flexibility by transforming eq. (24) into eq. (13).

3.2 Addition of Mass Elements
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The design sensitivity coefficient of the modal flexibility fn(c, c) at the nth natural mode at point C of a machine
structural system with respect to the small hypothetical mass MI at point I(such as shown in Fig. 2) is given in eq. (15).

The procedures for reducing the modal flexibility fn(c, c) by means of the addition of a mass element are as follows:
Step 1. In order to detect a point where a mass element should be added, search for a point I having a regative value

on the right side part of eq. (15) of which the absolute value is maximum in the feasible region of the machine structural

system, and add a small mass element at point I.

Step 2. If the modal flexibility fn(c, c) is sufficiently small or has reached the convergence point, the added mass
element is adopted for the final design. Otherwise, go to Step 3.

Step 3. Modify the point I so that the right side part of eq. (15) has anegative maximum absolute value, and increase
the magnitude of the mass at point I and return to Step 2.

3.3 Substantial Changes of Joint Design Variables

In a usual searching process for an optimum design solution, initial design variables are slightly changed so that the

objective function is most effectively minimized (or maximized). Hence, if an initial design variable has a low sensitivity for

changing the objective function and is widely different from the optimum solution, it takes a very long time to reach the

optimum solution, and the design variable often converges into some local optimum point without reaching the optimum
solution.

From the standpoint of static rigidity (that is, reciprocal of the static compliance), the rigidity of a joint is required to

be as great as possible. However, from the standpoint of dynamic characteristics, the rigidity of a point is required to have a

specific value or a value within a specific region in the following cases:

(i) when a change in the ratio fn/fs of the modal flexibility fn to the static compliance fs is required,

(ii) when an increase of the damping ratio at the natural mode is required.

When the spring stiffness of a joint in the initial design of a structural model has the value at point H as shown in

Fig. 3, the design sensitivity coefficient at the point is very small, and potential energy is scarcely stored at the spring. Hence,
the spring stiffness may not be changed largely to the region S, and a sufficient change of the vibrational characteristics cannot

be generated. In order to attain objective (i) or (ii), the spring stiffness at the joint should be reduced to the region S. If

the internal vibratory force at the spring element is large at point H, there is a high possibility to realize objective (i) or (ii)
effectively with this spring element.

The procedures for realizing objective (i) or (ii) are as follows:

Step 1. Detect a spring element having the great internal vibratory force but a small potential energy distribution rate

among spring elements of all the joints (the spring stiffness kj at the spring element has a value within the region T as shown
in Fig. 3).

Step 2. Decrease the spring stiffness kj to a value within the region S as shown in Fig. 3.

Step 3. Start the search for the optimum value after having reduced the spring stiffness kj to get a new initial value.

4. NUMERICAL EXAMPLE

The procedures described in Section 3 are demonstrated on the machine structural model shown in Fig. 4. Fig. 5 shows

the simulation model for structural analysis. At the initial design shown in Fig. 6(a), the spring stiffness values at joints Jl,

J2, J3 and J4(see Fig. 5) were large enough for avoiding degradation of the static rigidity. The relative receptance frequency

response between points A and B in Y-direction for this initial model is shown in Fig. 7(a). The receptance value at the 1st

natural mode is very large, and the ratio fl/fs of the modal flexibility fl at the 1st natural mode to the static compliance fs
is 0.96. The three kinds of procedures proposed in Section 3 were successively added on the same structural model.

4. 1 Addition of an Elastic Member

The objective in this step is to decrease the static compliance fs by adding a circular tube within the shaded region in

Fig. 5. Fig. 6(b) shows the final design obtained according to the procedures described in Section 3.1. The receptance fre-

quency response for the design is shown in Fig. 7(b). The static compliance fs decreases from 2.36x 10 -6 m/N at the initial
design to 1.33 x 10 -6 m/N. The incremental percentage of the total weight of the structural model by addition of the elastic

member is only 0.0134%.
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4.2 Addition of a Mass Element

The objective in this step is to decrease the maximum modal flexibility value at the 1st natural mode. A mass element

was added at point I of the model as shown in Fig. 6(c) according to the procedures described in Section 3.2. Fig. 7(c) shows

the receptance frequency response after the design change. The maximum modal flexibility value decreased by 6%.

4. 3 Substantial Changes of Joint Design Variables

The objective in this step is to minimize the maximum receptance value over the whole frequency range. The modal

internal force coefficient hEj 1 of the 1st natural mode was large at the spring element in Y-direction of joint J4- The spring
stiffness kj of the spring element was 1.0x 108 N/m. Since the potential energy distribution rate at the spring element was

very small (that means the design sensitivity coefficient is also very small), the spring stiffness kj was greatly reduced to the
value of 2.0x10 s N/m. After this spring stiffness value was set as an initial design variable of kj, the spring stiffness kj and

the damping coefficients of all joints 01 through J4) were determined so that the maximum receptance value was minimized.

Fig. 7(d) shows the receptance frequency response after the proposed procedures. By these procedures, two requirements

(i) great reduction of the ratio fn/f s of the modal flexibility fn at the natural mode having the greatest receptance value to

the static comprance fs and (ii) great increase of the damping ratio at the natural mode (decribed at Section 3.3) were simul-
taneously accomplished.

It can be understood from comparison of the receptance frequency response in Fig. 7(d) with that in Fig. 7(a) that

the proposed procedures are effective for greater improvement of the vibrational characteristics (the maximum receptance
value).

5. CONCLUDING REMARKS

Methodologies for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative
parameters were proposed. The features are as follows:

(1) Addition of elastic members and mass elements is carried out using information of displacement distributions and
design sensitivity analyses for altering the initial framework of a structural model.

(2) Substartial changes of joint design variables are conducted using information of internal vibratory forces and
potential energy distributions for the improvement of the poor initial design variables.

1.

.

.

4.

.
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Table 1. Procedures for the design optimization method based on clarification of competitive-coopera-
tive relationships between characteristics (ref. 5)

Phase 1

Phase 2

Phase 3

Design variables

o Design variables of structural

members and elements having an

influence on the static rigidity

o Design variables of structural

members and elements and joint

stiffnesses having no influence on
the static rigidity

o Damping coefficients of all joints

Range of modeling, type of modeling

and analytical method

o Modeling for a structure on the

static force loop

o Static rigidity analysis

o Modeling for a complete structure

o Vibrational analysis for an

undamped vibrational system

o Modeling for a complete structure

o Vibrational analysis for a non-

proportionally damped vibrational
system
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ABSTRACT

As a part of an ongoing NASA/industry rotorcraft structural dynamics

program, a study was recently initiated at Langley on optimization of

rotorcraft structures for vibration reduction. The objective of this

study is to develop practical computational procedures for structural

optimization of airframes subject to steady-state vibration response

constraints. One of the key elements of any such computational proce-

dure is design sensitivity analysis. A method for design sensitivity

analysis of airframes under vibration response constraints is pre-

sented. The mathematical formulation of the method and its implemen-

tation as a new solution sequence in MSC/NASTRAN are described. The

results of the application of the method to a simple finite element

'stick' model of the AH-1G helicopter airframe are presented and

discussed. Selection of design variables that are most likely to bring

about changes in the response at specified locations in the airframe is

based on consideration of forced response strain energy. Sensitivity

coefficients are determined for the selected design variable set.

Constraints on the natural frequencies are also included in addition

to the constraints on the steady-state response. Sensitivity coeffi-

cients for these constraints are determined. Results of the analysis

and insights gained in applying the method to the airframe model are
discussed. The general nature of future work to be conducted is
described.
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INTRODUCTION

Excessive vibrations have a detrimental influence on the

performance, operation and maintenance of helicopters. The primary

source of vibration in the airframe arises from the vibratory airloads

acting on the main rotor which are transmitted to the airframe at known

discrete frequencies. Vibration continues to be a problem in

helicopters despite considerable efforts to reduce it. The problem has
been attacked by the use of active and passive vibration control

devices, by changes to main rotor system and by airframe design. Use
of vibration control devices involves weight penalties. Alterations to

the rotor by modifying blade stiffness and mass distribution are being

studied. Airframes are designed to satisfy strength, vibration and

performance requirements. Dsign for vibrations is based primarily on
previous experience. Selection of the best airframe that meets all the

requirements, in particular the vibration requirements, is a difficult

task. It would appear that structural optimization tools, properly

brought to bear by the design engineer, would go a long way toward

achieving the goal of an analysis capability for designing a low
vibration helicopter.

The use of structural optimization in helicopter airframe design

for vibration reduction is a relatively new research topic and has

only recently been addressed. Work related to "optimization" of

helicopter airframe structures is contained primarily in references

1-6. However, only references 5 and 6 use a nonlinear programming

approach. Sciarra (1) used a strain energy approach to guide

modification of a structure; Done (2) and Sobey (3) used the Vincent
Circle approach; Hanson (4) did a comparative study of the above two

approaches; Done and Rangacharyulu (5) and Miura and Chargin (6) used a

formal optimization approach for airframe design.

As a part of an ongoing NASA/industry rotorcraft structural

dynamics program, a study was recently initiated at Langley on
optimization of rotorcraft structures for vibration reduction. The

objective of this study is to develop practical computational

procedures for optimization of rotorcraft structures subject to

steady-state vibratory loads. One of the key elements in the

development of a computational procedure for airframe optimization is

design sensitivity analysis. A method for design sensitivity analysis

of airframes under steady-state response due to rotor-induced dynamic

loads is presented. Constraints on airframe dynamic response
displacements and natural frequencies are considered. The mathematical

formulation of the method and its implementation as a new solution

sequence in MSC/NASTRAN are described. The results of the application
of the method to a simple finite element 'stick' model of the AH-1G

helicopter airframe are discussed. The paper concludes with a short
discussion of the direction future in-house work in this area is to
take.

300



DEFINITION OF OPTIMIZATION PROBLEM

The airframe structure of a helicopter is subjected to steady-

state rotor-induced harmonic loads acting at the top of the rotor

mast. The loads, in general, have six components and occur at

frequencies which are integer multiples of the product of the number of
blades and the rotor rotational speed. It is assumed that both the

magnitude and frequency of the rotor loads acting on the airframe are

known and that they are constant during design modifications.

The airframe structure is assumed to have nonuniform stiffness

and mass distributions which are functions of the geometry of the

structural members. The design variables are taken to be the dimensions

which characterize the cross-sectional geometry of a member. In

particular, for a beam member having a solid rectangular cross-section

the design variable would be the depth and height. Selection of

design variables in a large airframe structure containing thousands of

members is a difficult task. An experienced airframe designer can

suggest candidate members that can be permitted to undergo design

modification and the extent to which they can be modified. Studies by

Sciarra (Ref.1) and Hanson (Ref.4) have provided some guidelines in

the selection of design variables. In particular it has been shown

that the design variables that are most likely to bring about changes

in the response at specified locations in the airframe are the ones

having maximum forced response strain energy. Using this criterion an
initial selection of design variables of an airframe can be made. In

general, any design change will introduce changes in dynamic response,

natural frequencies, mode shapes, static strength, weight, and center

of gravity location of an airframe and they in turn indirectly change

the performance characteristics of a helicopter as a whole. Therefore,

constraints have to be imposed on the allowable response characteristics

to restrict design changes within certain bounds. For the work reported

in the paper, only constraints on steady-state dynamic response
displacements and natural frequencies are considered.

To complete the definition of the optimization problem_ an

objective function must be defined. This is not an easy task. Should

the airframe weight be the objective function or the dynamic response

displacement? If the former is selected as the objective function,

can the reduced dynamic response be achieved without increasing the
stiffness and hence the mass of an airframe? If the latter is the

objective function an optimizer may try to drive the response at a

point to zero which may not result in reduction of vibration at other

points on an airframe. Because this paper is limited to a study of

design sensitivity analysis, these additional considerations are not
addressed here.

301



DESIGN SENSITIVITY ANALYSIS OF AIRFRAME

In this section formulation of design sensitivity analysis of an

airframe with constraints on steady-state dynamic response displace-

ments is presented and equations for determining the sensitivity

coefficients are given. Also, pertinent equations used in the study,

such as equations for airframe response analysis and expressions for
strain energy, are presented.

The equation of motion (state equation) for determining the

steady-state dynamic response is given in the Figure (1). The equation
is written in matrix form in terms of the coefficient matrices K

(stiffness), M (mass), C (damping), and F (force). The magnitude and

frequency of the force F are assumed to be known. Steady-state

response X occurs at the same frequency as the forcing frequency. The

unknown response vector X is obtained by solving a set of simultaneous

linearalgebraic equations. The equation of motion for the undamped

naturalfrequencies of an airframe is given. Expressions for modal

element strain energy and undamped forced response strain energy are
also given in the figure.

To determine the sensitivity coefficients for constraints on

the steady-state response X, the design variable b is changed by a

small amount db. The structural members associated with the design
variables will have new cross-sectional properties and new stiffness,

mass and damping matrices for the changed design. Thus, for a small

change in a design variable b, new K, M, and C are computed and a new

response is generated. The response x for the new design must satisfy
the equilibrium requirement h(b,x)=O. A linearized version of this

requirement is used to derive an expression for the sensitivity

coefficients @x/@b as outlined in Figure (2). The matrices on the

left-hand side (LHS) of the equation for the sensitivity coefficients

are already known from the finite element analysis for a particular

design. In the right-hand side (RHS) the change in force due to a

change in design is assumed to be zero. Only the changes in the

stiffness, mass and damping matrices due to an increment in design have
to be computed. The matrices thus formed are assembled and solved as a

set of simultaneous linear algebraic equation for the unknowns @x/@b.

An incremental form of the equations for sensitivity coefficients is
also given in the figure. The size of the matrix on the RHS is

dependent on the number of design variables and number of forcing

frequencies used in the analysis. The sensitivity coefficients @x/Bb

are obtained in a matrix form with rows corresponding to the number of

airframe degrees of freedom and columns corresponding to the number of

airframe design variables. The number of matrices of @x/Bb depends on
the number of load cases considered.
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IMPLEMENTATION OF SENSITIVITY ANALYSIS IN MSC/NASTRAN

NASTRAN is used in the helicopter industry for finite element

analysis applications, and therefore it was judged appropriate to

implement the sensitivity analysis in that program. A new solution

sequence to compute the sensitivity coefficients using NASTRAN Direct
Matrix Abstraction Program (DMAP) modules was developed. The

incremental form of the equation for the sensitivity coefficients for

constraints on steady-state dynamic response displacements was

implemented using the DMAP modules and incorporated into MSC/NASTRAN.
The solution for the sensitivity coefficients is obtained in the

sequence shown in Figure (3). The corresponding DMAP modules are also
shown there. The DMAP program uses the data about design variables and

constraints specified on NASTRAN bulk data cards (DVAR, DVSET, and
DSCONS). The data for the stiffness and mass matrices of the airframe

generated in a previous finite element analysis are retrieved from

the data base using module DBFETCH. Damping was not considered in the

current implementation. The program generates new cross-sectional

properties of structural members for an increment in design and
rearranges the intermediate data using module DSTA. Using modules EMG

and DSVG1, AK and AM are computed. The RHS of the equations for

sensitivity coefficients is assembled using module ADD. The equations

are then solved using the FRRD1 module to obtain the sensitivity

coefficients for the dynamic response constraints. Several other DMAP

modules, such as SSG2, MODACC, SDR1, SDR2, DSMA, DBSTORE and LMATPRT,
are used for pre-and post-processing of data used in the solution

sequence and also for organizing the stiffness, mass and sensitivity
coefficient matrices in a partitioned form.

Numerical results for sensitivity coefficients for constraints

on steady-state dynamic response are obtained as follows. First, the

airframe dynamic response is obtained from Rigid Format 68. Then,

the solution sequence described above is executed.
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APPLICATION TO AH-1G HELICOPTER AIRFRAME

Description of the AH-IG Airframe:

The airframe structure of the AH-IG helicopter descibed in

references 4 and 7 was used for the sensitivity analysis application.

The airframe structure with its skin panels removed is shown in Figure

(4). The fuselage portion of the airframe is built around two main

beams which provide the primary vertical bending stiffness in the

fuselage structure. The main beams are tied together by the lower

horizontal floors, the forward fuel cell cover, and the engine deck to

give the fuselage lateral stiffness. The main rotor pylon provides the

structural connection between the main rotor and the fuselage. It is

attached to the fuselage through five elastomeric mounts and a lift

link. The lift link is the primary vertical load path and is pinned to

the center wing carry-through beam. The engine, gun turret and the

landing gear are attached to the fuselage. The wings (not shown) are

designed mainly for carrying external loads and are attached to the

fuselage on either side. The tailboom is bolted to the fuselage with

four attachment fittings. The tailboom is of semimonocoque

construction having aluminium skins, stringers and longerons. The

vertical fin is connected to the tailboom through the tail rotor mast.

Elastic Line Model of the AH-IG Airframe:

A built-up finite element model of the AH-1G airframe structure

is available (Ref. 7). However, for the initial studies on sensitivity

analysis which are the subject of this paper, an elastic line or
'stick' model of the AH-1G airframe (Ref. 4) was used. The model is

shown in Figure (5). The dynamic characteristics of this elastic line

model are similar to those of the built-up model of the airframe. The

fuselage, tailboom, wings and rotor mast structure of the airframe were

modelled with beam elements. Scalar spring elements were used in the

pylon support structure. The engine and the gun turret mounts were

modelled as rigid bar elements. The NASTRAN finite element model of

this airframe consists of 42 beam elements, 13 scalar spring elements

and 12 rigid elements. There are 56 grid points in the model for a

total of 336 degrees of freedom. After applying multi-point and

single-point constraints and omitting massless degrees of freedom, the

model reduces to one having 130 dynamic degrees of freedom. The

airframe mass, both concentrated and distributed, is lumped at the grid

points selected as the dynamic degrees of freedom. Structural damping
of the airframe was not considered.

The primary vertical vibratory force coming from the rotor acts

at grid point 55. The force has a magnitude of 1000 Ib and a frequency
of 10.8 Hz ('2/rev').
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NUMERICAL RESULTS AND DISCUSSIONS

Numerical results from the application of sensitivity analysis
to a stick finite element model of the AH-1G helicopter airframe are

presented and discussed here.

Finite Element Analysis Results:

A finite element analysis of the elastic line model was made

using MSC/NASTRAN. The first few lowest natural frequencies obtained
for the model are - 3.02 Hz (pylon pitch), 4.22 Hz (pylon roll), 6.80

Hz (1st airframe lateral bending), 7.85 Hz (1st airframe vertical

bending), 16.70 Hz (2nd airframe lateral bending) and 17.10 Hz (2nd
airframe vertical bending). The mode shapes corresponding to the

vertical bending modes are shown in Figures (6 and 7). The first mode

(frequency 7.85 Hz) has two nodes (zero displacement) on the airframe

- one near the pilot seat and another near the middle of the tailboom.

The second vertical bending mode (frequency 17.1 Hz) has three nodes -

near grid points 6, 14 , and 28.

The steady-state response of the airframe due to vertical

excitation at a frequency of 10.8 Hz is shown in Figure (8). The

response shape has two nodes (points of zero displacement) - one near

grid point 2 and another near grid point 22. All other points on the
airframe vibrate at various levels of acceleration depending on the

amount of displacement of the airframe from the undeformed position.

The element strain energies associated with the forced response

were also calculated. The distribution of strain energy in the

fuselage and tailboom elements is shown in Figures (9-10) and discussed
in a later section.

Sensitivity Analysis Results:

Using the strain energy criterion, the structural members which

are most likely to influence the natural frequencies and the response
were identified. Elements in the rear part of the fuselage and most of

the elements in the tailboom were identified as likely candidates. The

cross-sectional properties of the elements identified were related to

design variables. In particular, design variable 'b' of the beam
element was related to the area and moment of inertia of the cross-

section (which are linear and cubic functions of b). A small increment

was given to b to compute a new value of the design variable.

Constraints on the steady-state dynamic response displacements

were imposed at the gun turret and pilot seat grid point locations

(4 and 8, respectively). Because only vertical responses were of

interest, only the vertical displacements were constrained. Although
constraints on lateral and torsional displacements would ultimately

also be required in a realistic design analysis, they were not

considered in this study. However, they can be easily included.
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The sensitivity coefficients for the selected constraints were

obtained from the MSC/NASTRAN DMAP program which was discussed

earlier. The sensitivity coefficients are plotted in a bar chart

format in Figures (11-14). The numerical value of a coefficient

indicates the amount of change in constraint value due to a small

(positive} change in the design variable (identified by the element

number, which also denotes the design variable number). A

positive/negative value of a sensitivity coefficient means that an

increase in the design variable results in an increase/decrease in the
constraint value. To physically interpret the results it is useful to

refer to the sensitivity of displacements (Bx/@b) rather than the

sensitivity of constraints (@h/@b). These sensitivities differ only by
a constant.

The results shown in Figures 11-12 indicate that the

sensitivity coefficients related to the tailboom elements have

magnitudes which are large compared to the fuselage elements. Consider

the sign of these coefficients. In the tailboom region the

coefficients are negative, whereas they are positive in the fuselage

region. This means that an increment in a design variable associated
with the members in the tailboom decreases the displacement at the

pilot seat (and vice-versa) whereas an increment in a design variable

in a fuselage member increases the displacement at the pilot seat (and
vice-versa). This shows that the tailboom must he stiffened and/or the

fuselage must be softened to reduce the dynamic response displacement

at the pilot seat. The sensitivity coefficients obtained for

constraints at the gun turret location are shown in Figures 13 and 14.

The tailboom elements have coefficients which are an order of magnitude

higher than those for the fuselage elements. This indicates that the

tailboom elements should be significantly stiffened. The coefficients

are negative for the fuselage and all elements in the tailboom (except

for element number 1213 which has a positive coefficient). This

suggests that the elements of the tailboom and the fuselage (except

1213} require stiffening to reduce the dynamic response at the gun

turret location. However, element 1213 requires a reduction in

stiffness. Hence, to satisfy the vibration constraint at the gun

turret location a stiffening of the airframe structure is required,
with an element with reduced stiffness at the junction of the fuselage

and the rotor mast (grid 12) of the airframe. In summary, the tailboom

requires a significant increase in stiffness to reduce the dynamic

response at both the pilot seat and gun turret locations. Thus, rather

straightforward considerations have provided the information about the

portion of the airframe to be modified, order of magnitude of

modification required, and the direction in which the modification

(stiffen or soften) is required.
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As the forced response of the airframe is a function of the

natural frequencies and mode shapes of the structure as well as the

excitation forces, any modification to the design variables to control

the response will also bring about changes in the natural frequencies.

also required. Constraints on the two lowest vertical bending modes
(natural frequencies 7.85 and 17.1 Hz) of the airframe were considered

here. Upper and lower limits on the first mode were specified at

7.0 and 8.5 Hz, respectively, and at 12.0 and 18.0 Hz, respectively,
for the second mode. MSC/NASTRAN Rigid Formats 63 and 53 were used to

obtain the sensitivity coefficients for the natural frequency

constraints. The results are discussed in the following paragraph.

The sensitivity coefficients for the constraints imposed on the
natural frequencies are plotted in Figures 15 and 16. The coefficients

obtained all have positive values. The figures indicate that the

coefficients related to the tailboom elements are large compared to
the coefficients for most of the fuselage elements in the case of the

first vertical bending mode. This shows that tailboom design strongly

influences the natural frequency of the first vertical bending mode.

In the case of the second vertical bending mode, some (aft) fuselage
elements and (rear) tailboom elements have sensitivity coefficients

larger than other elements of the airframe, and therefore they have a
strong influence on the frequency of that mode. In both cases the

coefficients are positive indicating that stiffening the elements

increases the natural frequency, as might be expected.

Interpretation of Results:

The calculation of sensitivity coefficients for a set of

condtraints often constitutes a major computational effort in an

optimization study. The sensitivity analysis results together with the

dynamic characteristics of the airframe must be interpreted carefully

to guide iterations to a low vibration design. Proper interpretation
of the results will provide insight into the nature of the

modifications required for the airframe and the feasibility of such

modifications. The results presented above are interpreted and
discussed below.

The steady-state response of the airframe is mainly due to
excitation of the two lowest vertical bending modes (7.850 and 17.1

Hz) by the vertical force (10.8 Hz). The response shape resembles the

first vertical bending mode, with the tailboom responding significantly

more than the fuselage. The large motion of the tailboom may be

attributed to the fact the tailboom is relatively soft compared to the

fuselage. Therefore, to shift the natural frequencies and thereby

change the response, the stiffness of the tailboom should be suitably

changed. The sensitivity results also suggest that changes should be

made to the tailboom design, that is, to increase the tailboom

stiffness. Thus, the results on dynamic characteristics and

sensitivity analysis are complementary.
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Consideration of strain energy results together with

sensitivity results can also be meaningful. In particular, compare the
distribution of element strain energy densities in the forced response

mode shape with the distribution of sensitivity coefficients in the
airframe. The element strain energy densities in the tailboom are

higher than those in the fuselage elements. This comparison indicates
that elements with higher strain energies have higher magnitudes of

sensitivity coefficients. Therefore, it would be beneficial to use

both strain energy information and sensitivity results in the

optimization procedure. There could be two possibilites here - one is
to use the strain energy results to select design variables; another is

to use the strain energy result to modify the design instead of using a

more costly design sensitivity analysis. The later possibility is yet

to be investigated. In this regard an explicit relation between the

strain energy of elements and sensitivity coefficients would be
useful.

The overall dynamics of the airframe has some bearing on the

optimization of an airframe for vibration reduction. In a conservative

dynamic system, the work done by external forces on a flexible
structure is transformed into strain energy and kinetic energy. In a

nonuniform structure, the distribution of these energies depends on the
stiffness and mass distributions. Often a portion of a structure (for

example, the tailboom of the AH-1G helicopter) may vibrate

significantly more than other portions. In a sense the portion of the
structure which vibrates most acts like a vibration absorber.

Therefore, if one tries to reduce vibration in a certain portion of the

airframe, some other portion of the airframe will vibrate excessively.

From the above discussion, the following possibilities offer

themselves for reducing vibrations in the fuselage:

1. Soften the tailboom so that it acts like a vibration

absorber.
2. Stiffen the tailboom and soften the fuselage to reduce

vibration at the pilot seat.
3. Stiffen the tailboom and the fuselage and provide a soft

spring-like interface structure between them to reduce

vibration at the gun turret.

Clearly, these possibilities are not realistic in practice.

However, they do suggest the types of modifications required for the

airframe to satisfy the design constraints. The magnitudes of the

modifications required can be obtained by interfacing the sensitivity

analysis program with an optimizer. Careful selection of limits on

design variables and constraints is needed, otherwise an optimizer may

drive the design to an unrealistic configuration. Also, other types of

constraints that must be imposed in a realistic airframe design should

be included in the study. Therefore, the airframe optimization problem

must be viewed in a broader perspective by considering the total

helicopter system and not just a part of it.
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CONCLUSIONS

An initial study on design sensitivity analysis of rotorcraft
airframe structures for vibration reduction has been made. A

mathematical formulation for sensitivity analysis for constraints on

steady-state forced response displacements was presented. The
equations for the sensitivity coefficients were implemented as a new

solution sequence in MSC/NASTRAN. Calculation of sensitivity

coefficients was made using an elastic line model of the AH-1G

helicopter airframe. The results of this preliminary study indicated

the following:

1. Sensitivity coefficient results indicate that tailboom

elements significantly influence the vibration response at

the pilot seat and gun turret locations.

2. Sesitive elements of the airframe have higher element strain

energies.

3. The first two vertical bending modes of the AH-1G airframe
have a significant influence on the vertical response of the

airframe under '2/rev' vertical rotor excitation loads.

4. Interpretation of the airframe dynamic characteristics

together with the sensitivity analysis results has brought

out the essential nature of modifications required in the
AH-IGairframe to reduce vibration.

DIRECTIONS FOR FUTURE WORK

The initial study on airframe sensitivity analysis indicates

that there are several important aspects that must be considered.

Based on the study, the following areas are identified for further

investigation:

1. Consider constraints on static strength, forced response

and natural frequencies simultaneously.

2. Interface an optimizer with the design sensitivity analysis

3. Study built-up finite element models.

4. Include airframe structural damping.

5. Include the effect of change of excitation force due to

change in airframe flexibility.

6. Address problem of disjoint design space in forced

response constraint formulation.

7. Consider a broader range of constraints (center-of-gravity

movement of airframe, crash-loads, etc.,) for more effective

use of optimization in actual helicopter design.
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PERTINENT EQUATIONS

EQUATIONS FOR STEADY-STATE RESPONSE

MX + CX + KX -- F
i_+. i=,E

Where F = f e X = x e

EQUATIONS FOR NATURAL MODES

MX + KX = 0
hJ+.

Where X = x e

UNDAMPED FORCED RESPONSE ELEMENT STRAIN ENERGY

! 1"

U = ---_- x ke x

MODAL ELEMENT STRAIN ENERGY

1 T

U = 2 xkex

Figure I.

EQUATIONS FOR SENSITIVITY COEFFICIENTS

CONSTRAINTS _ ON STEADY-STATE DYNAMIC DISPLACEMENTS:

Ixl
t_ - 1 _< 0

IxJ
STATE EQUATION FOR DYNAMIC DISPLACEMENTS:

2

h(b,x) = (-_ M + ieC + K) x - f = 0

Linear approximation to change in h due to chonge in b:

_h bh 6x

6h = -- _b + -- _x ALSO, (%x = _b

bb bx _b

EQUATIONS FOR SENSITIVITY COEFFICIENTS:
2 _x _f 2 _)M _C bK

(-(,.}a + ioC + K)-- =
_b ab

2

( -aM +ieC + K) x =a,f

0

( _--+i_-- +--)x
_b bb _b

2
O

( _ + io,_c +,_K) x

Figure 2.
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SENSITIVITY ANALYSIS FOR DYNAMIC RESPONSE USING

MSC/NASTRAN DMAP SOLUTION SEQUENCE

SOLUTION SEQUENCE NASTRAN MODULES

I READ CONSTRAINTS AND lDESICN VARIABLE DATA

I

ICET M,K,x,f,(a,C IFROM DATABASE

I

ICOMPUTE SECTION PRO- IPERIY FOR NEW DESlCN
I

ICOMPUTE K, M, f,c IFOR CHANGE IN DESIGN

I
_ COMPUTE

f -(-_Z_M+IG)AC+ AK)I
I

I SOLVE FOR SENSITIVITY,COEFFICIENTS _ I

DBFETCH,PARAM

TABPT.MATPRT

DSTA,DBSTORE

EMC,DSVC1

ADD,PARAML,
PARAMR

SSC2,FRRD1,MODACC

SDR1,SDR2,DSVG3,DSMA

DBSTORE,LMATPRT

Figure 3.

AIRFRAME STRUCTURE OF THE AH-1G HELICOPTER

Actual helicopter
airframe structure
(skins removed)

Main rotor pylon
transmission case_=link-

Elastomeric
mount (4)

Center wing
carry through beam
(lift beam)

Figure 4.
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ELASTIC LINE (STICK) MODEL OF THE AH-1G AIRFRAME

56 grid points
55 structural elements
70 analysisdegreesof freedom

40

Figure 5.

FZI_T VERTICAL BENDING HODE OF" AZRF'RAHE (F'REQ.-7.8E HZ)

/
/

/

Figure 6.
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SECOND VERTICAL BENDING MODE OF" AZRF'RAHE (F'REO.-17. I HZ)

Figure 7.

Figure 8.
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ELEMENT STRAIN ENERGY DENSITIES
IN FUSELAGE FOR FORCED RESPONSE
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ELEMENT STRAIN ENERGY DENSITIES
IN TAILBOOM FOR FORCED RESPONSE
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SUHMA R Y

This paper extends the author's prior development of a general abstract

representation for the design sensitivities of Green's functional for linear

structural systems to the case where the structural stiffness vanishes at an

internal location. This situation often occurs in the optimal design of

structures. Most optimality criteria require that optimally designed beams be

statically determinate. For clamped-pinned beams, for example, this is

possible only if the flexural stiffness vanishes at some intermediate location.

The Green's function for such structures depends upon the stiffness and the

location where it vanishes. A precise representation for Green's function's

sensitivity to the location of vanishing stiffness is presented for beams and

axisymmetric plates.

INT RODUCTI ON

This paper is concerned exclusively with the linear self-adjoint differ-

ential equation, represented in abstract form by

Lu _ T* ET u = f in (la)

Here T and T* are operators which are L2(a) adjoints of each other, E is a

stiffness operator which is symmetric with respect to the L2(_) inner product,

u is the response function and f is a specified disturbance. The open region

_ic Rn is bounded by _.

Appropriate mixed inhomogeneous boundary conditions are appended to

equation (la). These are

BT u = g on _EI

B*Y*ET u : h on _I]2

(ib)

where _I U_2 = d_ and _IIN _2 = _" The operators T and ¥* map functions in

the domain of L into functions defined on _I and 3_2, respectively. And the

operators B and B* map functions defined on 0_I and _a2, respectively, into

functions defined on _I and _2. Examples of the operators appearing in

equations (la) and (lb) can be found in reference i for a number of specific

applications.

*This research was supported by the Howard University Large Space Structure

Institute through Grant No. NAC-383 from the NASA Langley Research Center.

319



The stiffness operator E frequently depends upon one or more design parame-
ters, which are collectively denoted by S. The operators T and T* are gener-
ally differential operators which are independent of the design. The boundary
operators mayor maynot be design dependent. There are two important classes
of problems for which the boundary operators depend upon S. One class of such
problems is usually referred to as shape optimization problems. Here, the
boundary is the design variable, and consequently the boundary operators are
necessarily design dependent. The other class of such problems occurs in
structural optimization theory whenever optimality requires that the stiffness
vanish somewherein the interior of _. In this case, equation (ib) must also
include an internal boundary where certain jump and/or continuity conditions
are specified. This latter class of problems is the primary concern of this
paper.

GREEN'SFUNCTIONANDFUNCTIONAL

Odenand Reddy (ref. 2) have shownthe operator P, which consists of the
spatial operator of equation (la) and the boundary operators of equation (ib),
will be self-adjoint if the following integration by parts formula is satisfied

(Tu,ETv)_ - (u,T*ETv)_ = (_u,B*_*ETv_ 2 - (DYu,Y*ETv) I (2)
for every u and v in the domain of P. In equation (2), (.,.) denotes the usual
L2 inner product and the appendedsubscript the domain of integration. Thus,
for example, (',')_ denotes the L2 (_[_) inner product. In the remainder of
this paper, it will be assumedthat the operators specified in equations (la)
and (lb) do indeed satisfy equation (2).

The solution to equations (la) and (Ib) can now be obtained in terms of
Green's function G, corresponding to the operator P, i.e.

: + (h,]G)_C2 (3)u (F,G)c + (g,_*ETG)_nI

Equation (3) maybe routinely derived by noting that G(x,y) satisfies

T* ETG(.,y) = 6y in n (4a)

and boundary conditions

BYG(-,y) = 0 on _l

B*_*ETG(-,y) = 0 on _2
(4b)

where 6y represents the Dirac distribution with a singularity at the location y.
Upon taking the L2(_) inner product of both sides of equation (4a) with u and
integrating the result twice by parts according to equation (2), equation (3)
immediately follows. Several illustrations of equation (3) have been derived
by Roach (ref. 3) for specific operator equations.

Green's function G(x,y) is defined on the Cartesian product space _ x
and is generally singular whenx=y. If any of the operators appearing in
equation (4) dependupon the design variable(s) S, then G is a functional of
the design S. Relss (ref. 4) recently presented a compact formula for the
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design derivative of G whenE is the only operator appearing in equations (la)
and (lb) that depends upon the design S. For, in this case, let S and S ÷ AS
denote two designs and define AGby

AG(x,y;S,gS) _ G(x,y;S+AS) - G(x,y,S) (5)

It immediately follows from equations (4a), (4b) and (5) that

T*ETAG = F in _

BYAG = 0 on _fil

B*Y*ETAG = H on °fi2

(6)

where

F _ - T*AET(G+AG)

H _ - B*Y*AET(G+AG)
(7)

A cursory comparison of equation (6) with equation (1) shows that the so-

lution for AG is immediately specified by equations (3) and (7); thus

AC = - (T*AET(G+AG),G)_

- (B*Y*AET(G+AG), _G) (8)

After applying the integration by parts formula (2), the variation AG simpli-
fies to

AG = - (TG, AET(G+AG))_ (9)

Equation (9) is an integral equation for AG. Considerable simplification re-

sults if E is Gateaux differentiable with respect to the design. In this case,

by restricting the design variation AS to be infinitesimal, AE is also infini-

tesimal and equation (9) may be linearized, i.e.,

6G-- - (TG,6ETG)fi (i0)

In equation (i0), the symbol A has been replaced by 6 in order to signify

linearization. Equation (lO) represents the design sensitivity of Green's
functional.

SINCULAR DESIGNS

Beams

As stated at the outset, the primary focus of this paper is on designs

whose stiffness vanishes somewhere in the interior of ft. For beams whose

boundary conditions are specified by (lb), the stiffness vanishes, at most, at

two internal locations. Let xo denote the typical location for which S(x o) = O.
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In terms of conventional notation for beams, the internal boundary con-
dition at xo is the prescription of zero moment,while the matching condition
is zero jump in both the shear force and the response. Thus

S(x) Gxx(X,y;Xo) I x=x = 0 (lla)
O

[[(S(X)Gxx(X,F;Xo))x]]X=Xo = 0 (lib)

[[G(x,y;Xo)]]x= x = 0 (llc)
O

where the subscripts denote partial differentiation with respect to the

indicated arguments, and [[']] denotes the jump in the quantity within the

double brackets. In addition, at the extremities of the beam, G must meet the

static and kinematic boundary conditions specified by equation (4b).

If the neighboring design S + 65 also vanishes at Xo, then 6S is specifiea

by equation (lO). If, however, S + 6S vanishes at xo + 6x o, then 6G depends

explicitly upon 6xo as well as 6S. Since the sensitivity of G with respect to

6S is determined by equation (i0), it remains to investigate the sensitivity of

G to variations in xo.

With xo treated as the design variable, the counterpart to equation (5)

becomes

&G(x,y;Xo,AXo) _ G(x,y,Xo+&Xo) - G(x,y;Xo)

which, upon linearization, simplifies to

6G = Gx (x,y;x o) 6x o (12)
O

It is important to note that. G will generally have a slope discontinuity at Xo,

but G + 6G will have a slope discontinuity at xo ÷ 6xo. It follows from

equation (6) that 66 satisfies

(S6Gxx)xx = 0 0 < x < xo, xo < x < L (13)

plus appropriate homogeneous boundary conditions at x=O and L. Due to the

shift in the internal boundary Xo, care must be taken in determining the in-

ternal matching conditions for 6G. While G satisfies equations (lla), (llb)

and (11c), G + 6G must satisfy

S(0+6G)xxJ x=x + 6x = 0
O O

[[(S(G+6G)xx)x]]x=x + 6x = 0
O O

[[G+6G]]x=x + 6x = O
O O

Next, SGxx is expanded in a Taylor series about xo to get.

SCxxlx + = SCxxlx=x+ (Saxx)xlx 6xo
0 0 0 0

which, by virtue of equations (lla) and (14a), becomes

- = 6xS6Gxxlx=xo (SCxx)xlx:xo o

(laa)

(14b)

(14c)

(15a)
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Similarly, by expanding (SG×x)x and G about x : Xo, and making use of equations
(lib), (llc), (13), (14b) and (14c), the following jump conditions are ob-
tained:

[[S6Gxx)x]]x: x = 0 (15b)
0

[[_G]]X=Xo = - [[Gx]]X=Xo_X O (15C)

The sensitivity 6G is completely specified by equstions (13), (15a),

(15b), (15c) and the boundary conditions at x=O and x=L. After multiplying

both sides of equation (13) by G and integrating the result; over the domains

0 < x < xo and xo < x < L, it; is found thai;

6G(z,y) = [[G(x,z)(S(x)GGxx(X,Y))x]]X:Xo

- [[Gx(X,z)S(x)GGxx(X,y)]]x= x
O

+ [[S(x)Gxx(X,z)dGx(x,y)]]X=Xo

- [[(S(X)Gxx(X,Z))x6G(x,F)]]x= x (16)
O

Equation (16) can be considerably simplified by making use of the jump con-

ditions (lla,b,c) and (15a,b,c). The first term on the right hand side of

equation (16) vanishes by virtue of equations (llc) and (15b); the third term

also vanishes as a consequence of equation (lla). Now, substitution of

fourth term yield

6G(y,z) = - {[[Gx(x,z)]]x= x Q(xo,Y)
O

+ [[Gx(x,y)]]X=Xo Q(xo,Z)}GXo

where _ (Xo,Y) is the shear force at xo due to a unit load at y. Thus

(17)

_(Xo,Y) = - (S(x) Gxx(X,Y))xlX=Xo (18)

The design derivative of Green's function, obtained from equations (12) and

(18), becomes

3G(x,y;Xo)/_x o = - [[Gx(X,Z)]]x=x ° _(Xo,Y)

- [[Gx(x,y)]]X:Xo _(xo,z)
(19)

Axisymmetric Circular Plates

Thin isotropic elastic plates, like the elastic beams considered above,

obey the fundamental equations (4a) and (4b). Consequently, the sensitivity of

Green's function with respect to changes in the plate stiffness (thickness)

must satisfy equation (lO). For simplicity, only ciruclar plates subject to

axisymmetric loads and boundary conditions are considered. The plates may be

full or annular, and the inner and outer boundaries of the plate will be de-

noted by a and b, respectively. For full plates, a=O. If the stiffness of the

plate vanishes over a circle of radius ro and this radius is also a design pa-

rameter, then the sensitivity of G with respect to ro also must be determined.
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At a circle of vanishing stiffness, the radial bending momentvanishes,
and both the shear force and the response are continuous. Thus the counter-
parts to equations (lla), (llb) and (llc) are, respectively,

S(r)IrGrr(r,_;r O) + _Gr(r,_;ro)}Ir= r = 0
O

[[r(S(r)(rGrr(r,_;ro) ÷ _Gr(r,_;ro)))r (20)

- S(r)(Gr(r,_;ro) + vrGrr(r,_;ro))]]r= r = 0
O

[[G(r,_;ro)]]r= _ = 0

where _ is Poisson's ratio. And, of course, Green's function must still satis-

fy the mixed boundary conditions (_b).

Since ro is now the design variable, equation (12) is replaced by

6G = Gr (r,_;ro)6r o (21)
O

where 6r o denotes the infinitesimal shift in the location of vanishing stiff-
ness.

It is desired to obtain an e×plicit representation for 6G, analogous to
equation (17). Toward this end, it is noted that 6G satisfies L6G=0 and there-

fore

(S(r6Grr + _6Or))rr - (S(r-16G r + _6Orr)) r = 0 (22)

for a<r<r o and ro<r<b. Also 6G satisfies the same boundary conditions at. a and
b @s does G.

Before considering the jump conditions for 6G at r=ro, some notational

simplication can be obtained by noting that G(r,_;ro) represents the response

at the circle of radius r due to a unit load distributed along the circle of

radius _. Accordingly, let M (r,_;r o) and Q (r,_;ro) denote, respectively, the

radial bending moment and shear force per unit length along the radius r due to

the same unit load acting along the radius _.

rM (r,_;ro)Ir=ro= 0

[[Q(r,C;ro)]]r= _ = 0

[[G(r,_;ro)]]r= _ = 0

Thus equations (20) simplify to

(23a)

(23b)

(23c)

For the sake of completeness, it is noted that F and Q are related to G through

rM = - S(rC + _G )
rr r

rq = - r(S(rG + vG )) (24)
rr r

+ S(G + vrG )
r £r

For the varied design whose stiffness vanishes at ro + 6ro, the jump con-
ditions analogous to (23a), (23b) and (23c) are, respectively,
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rN (r,_;r o) + r6M(r,6;ro)Ir=_+6_= 0 (25a)

[[rQ(r,_;ro) + r6Q(r,_;ro)]]r=_+6_= 0 (25b)

[[G(r,_;ro) + 6G(r,_;ro)]]r=r +6r = 0 (25c)
O O

By expanding• rM Ir=no +6n'o rQIr=_ +6_and G Ir=r_+6_ in Taylor series about
r_ro, and simplifying t_e result uslng equations (_25aY, (25b) and (25c), the

jump conditions

r6M] r=r ° (ell)elr=r °= - 6r O

]r=ro = 0[[r6Q] + 5r°

[[6G]]r=ro : - [[Gr]]r=r 6ro
O

are readily obtained.

equations (24). Thus

(26a)

(26b)

(26c)

The quantities 6M and 6Q are implicity defined through

r6M = - S(rSGrr + _6G r)

r6Q = - r(S(rSGrr + _6Gr)) r (27)

* S(6G r + _r6Grr)

The sensitivity 6G may now be determined explicitly by multiplying both

sides of equation (22) by G and integrating the result from r=a to r=b. Thus

6G(c,_) = + [[rQ(r,c)6G(r,_)]]r= r
O

- [[r_(r,c)SGr(r,_)]]r=r °

+ [[Gr(r,5) r6:_(r,_)]]r= r
O

- [[G(r,_)rSQ(r,_)]]r= _ (28)

The second and fourth terms on the right hand-side of equation (28) vanish by

virtue of equation (23a) and equations (23c) and (26b), respectively. Moreover,
equations (26c) and (26b) transform the first term into

- rQ(r,5)Ir=r [[Gr(r,_.)]]r= r 6r o
O O

while the third term, obtained from equation (26a) and the equilibrium
equation, becomes

- rQ(r,_)Ir=r _iGr(r,_)]]r= r 6r o
O O

Therefore, the design derivative _G/_r o is given by

_G(_,_;ro)/_r o = - iroQ(ro,c)[[Gr(r,_)]]r=r
O

+ roQ(ro,_)[[Gr(r ,_)]]r=_ } (29)
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APPLICATIONSTOOPTIMALDESIG_

The usual method of obtaining structural optimality criteria associated
with specific cost functionals relies on developing an appropriate variational
formulation of the field equations (la) and (ib). Moreover, each cost
functional requires a different variational formulation. In contrast to the
historical approaches, the design derivatives specified by equations (I0) and
(17) or (29) can be used directly to determine the optimality criteria associ-
ated with any cost functional without the need of a variational formulation.
In order to illustrate the foregoing claim, structural optimality criteria will
be derived for two different cost. functionals: minimumresponse and minimum
compliance.

The optimality criteria associated with the design of a fixed-weight
structure for minimumresponse at a specified location is considered first.
Boundary conditions and loads are assumedknown. It is desired to obtain a
complete description of the design variable S including its singular points
(locations of vanishing stiffness). Shield and Prager (ref. 5) obtained the
optimality condition for this problem only after discovering the principle of
stationary mutual potential energy. They did not address the question of locat-
ing the singular points. However, at least one author (ref. 6) incorrectly
assumedthat such points can be obtained by requiring the response to be con-
tinuously differentiable everywhere.

Attention is nowdirected toward equation (la) and (ib) with g = h = O.
According to equation (3), the solution for the response is

u = (f, G

Let the location y be specified and u(y) be a minimum. Thus

whence

u(y) = (f (-), G(-,y))_ (30)

6u(y) = (f(.), 6G(.,y))_ (31)

For the moment, it will be assumed that S is not singular anywhere. After sub-

stituting equation (i0) into equation (31) and changing the order of the resul-

ting double integration, equation (31) becomes

_E
6u(y) = - (Tu, _-_ 6STG(.,y)_fl (32)

The volume constraint may be easily handled through a Lagrange multiplier. Let

v(S) denote the specific volume and A a Lagrange multiplier. Then the con-

dition 6u(y) = 0 for all designs consistent with the constant volume constraint

requires that the augmented functional

_E _v

- (Tu, _--S-6STG (.,y))_ * A (1,_-_ 6S)c = 0

for all variations 6S. Thus the optimality condition

Tu. ___EE. TG(.,y) = I ___v (33)
_S _S
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follows immediately. For beams, the equivalent to equation (33) was obtained
in reference 5. The constant I appearing in equation (33) can be determined
from the fixed-volume constraint.

It was stated earlier that, in manyapplications, there can be no solution
to the optimality and field equations unless a singular point occurs within the
structure. In this case it is not possible to determine the location of the
singularity from the optimality condition and field equations. This location
must be considered on additional design variable, and consequently its location
will be determined from an additional optimality condition.

For simplicity, it will be assumedthat the structure is a beam. In this
case, equation (17) is substituted into equation (31), and the resulting double
integrals are evaluated by reversing the order of the integrations. Thus

6u(y) : - Q(Xo)[[Gz(z,y)]]z= x 6xo
O

- Q(Xo,F)[[Uz(Z) ]]z=x 6xo (34)
O

Since the specific volume v is independent of Xo, the optimality condition to

determine xo is obtained directly from equation (34). Thus

Q(xo)[[Gz(z,Y)]]X=Xo

÷ Q(xoY)[[Uz(Z)]]X:Xo = 0 (35)

Next, consider the problem of mintmlzing the compliance of a structure.

The compliance C is defined to be the work done by the external loads. Thus

whence

c = (u,f)n

6C = (6u,f) c (36)

Substitution of equation (32) into equation (36) yields

DE

6C = - (Tu, _-{6STu_

Consequently, the optimality conditon for prescribed volume becomes

DE _v

Tu. 2--{ • Tu = _ 2--{ (37)

Equation (37), in its various specific forms, has been derived by many authors

for specific structures. In virtually all instances, the principle of minimum

potential energy has been an ingredient necessary to the derivation.

The location of any singular points may be determined in the same way that

it was done for the minimum response design. In this case, equation (34) is

substituted into equation (36) to yield

6C = - 2Q(Xo)[[Uz(Z)]]z= x 6xo
O
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4

The optimality condition to determine Xo, therefore, is

[[Uz(Z)]]z: x = 0 (38)
0

As a final remark, it is pointed out, without elaboration, that the

approach taken in this paper is easily generalized to transient structures.

REFERENCES

_o

.

,

o

.

.

Reiss, R.; and Haug, E.J.: Extremum Principles for Linear Initial-Value

Problems of Mathematical Physics. Int. J. Engrg. Sci., vol. 16, 1978,

pp. 231-251.

Oden, J.T.; and Reddy, J.N.: Variational Methods in Theoretical Mechanics.

Springer-Verlag, Berlin, 1976.

Roach, G.F.: Green's Functions: Introductory Theory with Applications.

Van-Nostrand Reinhold, London, 1970.

Reiss, R.: On the Design Derivative of Green's Functional. Eighteenth

Mid-western Mechanics Conference, Iowa City, May 1983.

Shield, R.T.; and Prager, W.: Optimal Structural Design for Given

Deflection J. App. Math. Phys. (ZAMP), vol. 21, 1970, pp. 513-523.

Huang, N.C.; and Tang, H.T.: Minimum-Weight Design of Elastic Sandwich

Beams with Deflection Constraints, vol. 4, 1969, pp. 277-298.

328



3-D MODELING AND AUTOMATIC REGRIDDING

IN SHAPE DESIGN SENSITIVITY ANALYSlS*

Kyung K. Choi and Tse-Min Yao

The University of lowa

Iowa City, Iowa

18876

The material derivative idea of continuum mechanics (Ref. i) and the

adjoint variable method of design sensitivity analysis are used to obtain a

computable expression for the effect of shape variations on measures of

structural performance of three-dimenslonal elastic solids (Ref. 2).

Consider the three-dimensional elastic solid shown in Figure I, with the

shape of the domain _ as a d_sig_ variable. In Figure I, z = [z I, z 2, z3] T is

the displacement field and r , P , and F" are clamped_ traction free, and

loaded boundaries, respectively.

Using the principle of virtual work, the variational equilibrium equation

for the elastic solid can be obtained (Ref. 3), where oiJ(z) and gij(_) are

the stress tensor due to a displacement z and the strain tensor due t_ a 2

kinematically admissible yirt_al _i_placement z, respectively, f = if', f , fB]T
is the body force, T = iT , T , T ] is the tractlorl force, and Z is the space

of kinematically admissible virtual displacement. When the Galerkin method is

applied to the variational equilibrium equation for approximate solution, an

approximate finite-element equation is obtained.

DIMENSIONAL EI_ISTIC SOLID

i5

r'

r-x 2

/
Principle of Virtual Work:

3

an(z,z) = fffn[ _ aiJ(z)_iJ(z)]d_

i,j=l

3 . 3

fffa[i_iflzl]dn + ffr2[i!lTizl]dr = _a(z),

for all z _ Z

• FEM Equation is an approximate equation of the variational equation.

Figure 1

*Research supported by NASA Langley Grant NAG-I-215
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Since the shape of domain _ of the elastic solid is treated as the design

variable, it is convenient to think of _ as a continuous medium and utilize

the material derivative idea of cont[,luum mechanics. The process of defor_nlng

to _. by mapping _ = T(_,T) may be viewed as a dynamic process of deforming
L . T

a continuum, wzth T playing the role of time. A design velocity field can be

considered as a perturbation of design variable (Refs. 2 and 4).

Suppose z (x) is a solution of the variational equilibrium equation on
the deformed domain _ . Then the mapping z (x) E z [x + Tv(x)) is defined on

T T T T
and z_(x ) depends on T in two ways. First, it is the solution of the

boundarg-vilue problem on _ . Second, it is evaluated at a po%nt x T that
• T

moves with T. Exlstence of the pointwise material derivative z is shown in

Ref. 2. If zT has a regular extension to a neighborhood U T of the
closure _ of _ then the partial derivative z' exists. One attractive

T'
feature o_ the partial derivative is that, with smoothness assumptions, it

commutes with the derivative with respect to x i (Ref. 2). (Fig. 2.)

VARIATION OF DOMAIN

r

x = T(x,T) = x + rV(x)
T

n = T(n,T)
T

dx _T(x,T)
T =

V(x) - dr _T

zd I=_-_ zT(x + rV(x)) T=0 = llm
T+0

= z'(x) + vzTv(x)

i = 1,2,3

zT(x + TV(x)) - z(x)

T

Figure 2
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A common form of structural performance measure involves stress in an

elastic solid. Consider a locally averaged stress functional _ over a small

subdomaln __C _ of the elastic solid, as shown in Figure 3, where g(o) is a

stress measure such as yon Mises stress or principal stress and mp is a
characteristic function that has a constant value on fl and its integral is

I. The averaged stress measure depends on shape of th_ domain in two ways;

first directly on the domain over which the integral _s carried out and second

on the stress o that, in turn, depends on the displacement field z.

Taking the first variation of __, using material derivative formulas of

Refs. 2 and 5, _[ is obtained. To o_tain an explicit expression for _' in

terms of the vel_city field V, a variational adjoint equation is introduced b_y

replacing z _ Z by a virtual displacement_ ICZ and equating terms involving

to the energy bilinear form an(l , %), yielding the variational adjoint
equation for the adjoint vari_)le %.

STRESS SHAPE SENSITIVITY

fffn g[a(z))an

tpp = fffn g[o(z)) m dfl = P

P ffn d_

P
3

_p = fff_[ [ g ij(z)olJ(z)]mpdfl
",j=1 O

3 3 k T

- ffffl _ [ [ g ij(z)cijk£(vz V£) ]mpdn
i,j=1 k,£=l o

+ fff_ g div Vm d_- fffn gmpd_ fffn m div VdflP P

3

an(X,X) = ff [ [ g ij(z)oiJ(_)]mpdfl,
i,j=l o

for all _ C Z

Figure 3
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Using the adjoint variable method of design sensitivity analysis (Refs. 2
and 4) and the domain method of Ref. 5, an explicit and computable expression
for _i in terms of the velocity field V is obtained. Evaluation of the design

P
sensitivity _p requires the solution z of the original variational equation
and the adjoint variable X of the variational adjoint equation. This is an
efficient calculation, using finite-element analysis, if the original
variational equation for z has already been solved, requiring only evaluation
of the solution of the sameset of finite-element equations with a different
right side, called an adjoint load.

For problems with smooth data in which stress is continuous, design
sensitivity analysis results can be used for a pointwise stress functional.

^

To obtain the formula, shrink the subdoma[u fl to a point _, where xG _ • In

this case, the characteristic function becomeg the Dirac delta measure, p

Even though sensitivity analysis results for only a stress functional are

presente4 here, the method is also applicable for displacement at a specified
^

point x and eigenvalue design sensitivity analysis, as shown in Refs. 2 and 5.

(Fig. 4.)

p

3 3 ..kt(vzkTv£) ]mpdflHf I [ I gij( >c
i,j=l k,£=l

+ fff g div Vm dfl - fff gmpdfl fff m div Vd_
P _ _ P

3 iT T

aO(z,%) : - fffn _ [oiJ(z)(Y% Vj) + oiJ(%)(Vz i Vj)]da
i,j=l

3

+ fffn[i,_'=l oiJ(z)eiJ (_) ] div Vdfl

3 3 fili
zO(x) = fffn _ xi(vfiTv)da + fffa[i_ i ] div Vda

i=! =

3 3 3

+ fir2 {- _ Ti(v_iTv) + (V[ _ Ti%i]Tn + H[ _ Tixi])(vTn)}dr
i=l i=l i=l

• Pointwlse stress functional can be treated for problems with smooth data.

Figure 4
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For numerical implementation of shape design sensitivity analysis, the

boundary P of the domain _ must be parameterized. There are several methods

to parameterize the boundary r (Ref. 6). Since the result of shape

optimlzation depends on the parameterization method used, it must be general

and flexible enough to represent a large class of structural shapes. It is

desirable that the parameterization method has the following properties:

smoothness, fairness, required order of continuity, controllability in global

and local senses, and a variation diminishing property. Among several

parameterizationmethods, Bezier and B-spline surfaces are commonly used (Ref.

6). Both Bezier and B-spline surfaces use a set of blending functions and

are defined in terms of characteristic polyhedra.

Points px.(V,W), i = 1,2,3, on a Bezler surface are constructed by taking
i

linear combinlations of a set of blending functions Bm,M(V ) and Dn,N(W ) and X i

coordinates c of control points (vertices of the characteristicmnx

polyhedron). A _ezier surface represented by a 4X4 array of points is shown

in Figure 5. If a Bezier surface is used, positions c of the control
mnx i

points are shape design parameters.

MODELING FOR SHAPE (BEZIER SURFACE)

×3

C31_.___J_ C44

°12-"

x2 ¢13 el4

×1

M N

Pxi(V,W) = [ _ Cm=0 n=0 mnxi Bm'M(v)Dn'N(w)
i = 1,2,3

Positions c
_nx.

1

of the control points are shape design parameters.

Figure 5
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The next step is to develop a general method of defining and computing a

velocity field in the domain, in terms of the perturbations of the positions

of control points. It is shown in Ref. 7 that regularity of the velocity

field must be at least at the level of regularity oF the displacement field of

the structure. This suggests use of displacement shape functions to

systematically define the velocity field in the domain. Moreover, a velocity

field that obeys the governing (elliptic) equation of the structure can he

selected. That is, a perturbation of the boundary can be considered as a

displacement at the boundary. With no additional external forces and a given

displacement at the boundary, the finite-element equation can be used to rim!

the displacement (domain velocity) field, where {V b} is the given perturbation

of nodes on the boundary, {V d} is the node velocity vector in the interior of

the domain, and {fb } is the fictitious boundary force acting on the varying

boundary.

To use _' in Figure 4 for sensitivity computation, first perturb design

parameter bi _posltions of control points), i=l, 2,..-,k, a unit magnitude to

obtain a boundary perturbation {Vb}. Then domain velocity {V d} is obtained.

Using {Vd} and displacement shape functions, _! in Figure 4 can be evaluated,

which gives _/_b. This method requires k sol_tlons of the velocity
1

equation. However, much as in adjoint analysis, this is an efficient

calculation, requiring only evaluation of the solution of the same set of

finite-element equations with a different right side for each unit

perturbation of bi, i=1,2, .-.,k. (Fig. 6.)

AUTOMATIC REGRIDDING FOR SHAPE DESIGN

Regularity of the velocity field must be the same as that of the

displacement field

Use of displacement shape functions to define velocity field

Velocity field gives transformation mapping T(X,T)

[Kdd] {Vd} =_ [_d ] {Vb}

Solve above equation k-tlmes

Excellent for boundary layer and/or substructuring technique

Figure 6
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The automatic regridding method presented in Figure 6 can be used with

the boundary-layer approach (Ref. 8) and/or substructuring techniques very

effectively. That is, if a large portion of the structure is fixed, except

for the boundary layer (or substructure), then the part of {Vd} that

corresponds to the fixed portion can be set equal to zero, thus reducing the

dimension of [Kdd].

Once a design change has been determined using an iterative design

process, regridding of interior grid points can be carried out using {Vd}.

the initial grid is optimized using an adaptive method (Ref. 9), the

regridding methc)d presented will tend to avoid distortion of the finite
elements.

If

To illustrate use of the automatic regriddlng method, a fillet problem

(Figure 7) is used. In Figure 7, regridding is performed at three stages. It

is interesting to observe that the method has a tendency to maintain

orthogonality of the elements. That is, if the initial grid is regular, then

the deformed grid tends to be regular. Also, the method presented can be

utilized as mesh generator. That is, starting from a regular shape with a

regularly patterned mesh (Figure 7(a)), the present method can be used to

generate a mesh (Figure 7(d)) directly (Ref. I0).

AIJTONATIC REGRIDDINC FOR FILLET PROBLEM
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• The method can also be used as a mesh generator.

Figure 7

335



To demonstrate use of the automatic regridding method for shape design,

an engine bearing cap (Ref. Ii), subject to oil film pressure and a bolt load,

is treated (Figure 8). Oil film pressure is a radial pressure loading,

assumed to be uniform. The engine bearing cap is modeled as a three

dimensional elastic solid. Due to symmetry, only the right half of the cap is

analyzed. The finite-element configuration and loading conditions are shown

in Figure 8. The material used is steel, with Young's modulus and Poisson's
ratio of E = 1.0 × I0 psi and v = 0.3, respectively. The finite-element

model shown in Figure 8 contains 82 elements, 768 nodal points, and 2111

active degrees of freedom. For analysis and design velocity fields, the ANSYS

finite-element STIF 95 (Ref. 12), which is a 20-node isoparametric element, is

used. As in Ref. 13, implementation of design sensitivity analysis is

performed outside the ANSYS finite element code.

The shape design variables for this problem are: The shape of the

varying surface FI, distance c5 of clamping bolt center line AB, and distance

c 6 of edge from the cap centerline. For surface r , a Bezier surface with a
1

4×4 array of points is used. For simplicity, only x2-coordinates of four

control points c I through c 4 are allowed to vary. That is, surface r I has

curvature in the ×l-direction only.

ENGINE BEARING CAP

CLAMPING BOLT FORCE= [4,775 lb.

OIL FILM PRESSURE= 5000psi

)2

r,

I

I

I

I

\, I
I
t
i

C5

Ca

; I
I I
I I
I I
I I
I I
I I

I I
I I
i i __,

x I

ANSYS STIF95 (20-Node Isoparametrlc element)

82 elements, 768 nodes, and 2Ill active DOF

Figure 8
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The expression for design sensitivity _' of averaged von Mises stressP
over individual finite elements is given in Figure 4, where g(a) is yon Mises

1 and 2
stress. Define @p _p as the functional values for the initial design h

2 I and let _' be the
and modified design b + _b, respectively. Let A_p= _p - _p P
predicted difference from sensitivity analysis. The ratio _'/A_ times I00 is

P P
used as a measureof accuracy; i.e., |00%meansthat the predicted change |_

,_<actly the sameas the actual change. Notice this accuracy measurewill not

meaningful information when A_p is very small comparedto _I, because thegive

difference &_pmay lose precision due to the subtraction _p

Numerical result with a 1%uniform design change; i.e., _b = 0.01 b, are

shownin Figure 9 for randomly selected finite elements. Results given in

Fig_ce 9 show excellent agreement between predictions _' and actual
P

changes A_p, except in element_ 5 and 57. However, the magnitudes of actual

change A_p are small for those elements.

SHAPE DESIGN SENSITIVITY FOR ENGINE BEARING CAP, 6b = O.Olb
(AVERAGED VON MISES STRESS OVER FINITE ELEMENTS)

El. i 2 _' (_/A_pXl00)%No. _P _p A_p P

i 9829.4564 9727.3229 - I02.1335 - 109.7298 107.4

5 11444.4800 1!448.0190 3.5390 0.4482 12.7
I0 17933.5910 17964.5170 30.9260 29.8750 96.6

14 34270.5140 34294.7650 24.2510 23.7614 98.0
20 12670.2480 12634.3500 - 35.8980 - 38.4216 107.0

26 7311.4083 6999.4094 - 311.9989 - 321.7022 103.1

30 7234.2502 7081.2085 - 153.0417 - 159.7947 104.4
35 13328.4650 13264.9790 - 63.4860 - 59.4243 93.6

39 44231.0680 42109.0220 -2122.0460 -2222.5504 104.7
44 5998.6512 5844.9335 - 153.7177 - 165.1199 107.4

48 6822.9614 6736.9477 - 86.0137 - 90.5011 105.2

53 13634.1000 12964.2560 - 669.8440 - 701.6882 104.8

57 6121.4120 6114.6667 - 6.7453 - 8.1242 120.4
62 7041.7283 6971.4204 - 70.3079 - 79.6051 113.2

66 4787.5653 4761.5085 - 26.0568 - 27.6278 106.0

71 6541.8233 6585.9308 44.1075 45.1422 102.4
75 3820.6962 3843.9362 23.2400 22.5210 96.9

80 6240.3854 6285.3485 44.9631 46.3209 103.0

Unit: psi

Figure 9
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A total hip reconstruction consists of a three-dimensional elastic solid

composed of cement, a metal stem, and cortical and trabecular bone (Figure

I0). For simplicity, cortical and trabecular bone are modeled with the same

material properties. Young's modulii and Poisson's ratios for metal stem

cement, and bone are: E l = 207 GPa, _I = 0.3, E 2 = 2.07 GPa, _2 = 0.23, and

E3 = 14.0 GPa, _3 = 0.3, respectively.

The femur model shown in Figure l0 is obtained by approximating the real

cadaver femur model of Ref. 14 with piecewise linear conical solids. For

simplicity, structural and loading symmetries are assumed . Therefore, only

half of the model is analyzed. A vertical load of 4000 N is applied at the

tip of the metal stem.

The finite-element model consists of 16 elements for the metal stem, 28

elements for the cement, and 36 elements for the bone. ANSYS element STIF 95

is used for all finite elements. The model has 525 nodes and 1335 active

degrees of freedom. The model is assumed to be fixed at the distal end of the

bone.

'I_)T_J_.HIP RECONSTRUCI_ION (I.MPL_d_'T DESIGN)

t HTERf'aCC SENSITIVITY

• Pointwise stress and strain energy density at interface.

• 16 elements for stem, 28 elements for cement, and 36 elements for bone

(all ANSYS STIF95).

• 525 nodes and 1335 active DOF.

Figure i0
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There are 16 shape design parameters: b I through b 8 are the radius of the

metal stem and b9 through b16 are the radius of the outer surface of the

cement, at different locations along the center line. Thus, bi+ 8 - b i,

i=1,2,...,8 is the thickness of the cement at those locations. The shape of

the outer surface of the bone does not change.

The principal stress is used as a design failure criteria for the metal

stem and bone, whereas strain energy density is considered as the design

failure criteria for cement.

Shape design sensitivity results for polntwise principal stress in the

stem at the stem-cement interface are given in Figure II, for a 5% design

change in design parameter b 5. The pointwise stress is measured at a Gauss

point (out of 9 Gauss points) on stem-cement interface of each stem finite

element.

Results presented in Figure 11 show excellent agreement between

predictions _ and actual changes A__, except in element 6. However, the

magnitude of actual change A_p is sm_ll compared to the magnitude of _

this element, so accuracy of the difference is questionable.

for

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, _b 5 = 0.05b 5

(POINTWISE PRINCIPAL STRESS IN THE STEM AT THE STEN-CENENT INTERFACE)

El. _1 2 ' (_/a_pX100)%No. P _p A@p _p

1 '65.75792800 65.74896400 -0.00896400 -0.00875783 97.70

2 77.13410600 77.24745600 0.11335000 0.11608011 102.41

3 58.03037400 58.53323000 0.50285600 0.52206340 103.82
4 77.00421000 79.96762700 2.96341700 3.01203420 101.64

5 151.71708000 146.27679000 -5.44029000 -5.35753070 98.48

6 234.54156000 234.78980000 0.24824000 0.68237420 274.88
7 288.65995000 291.58509000 2.92514000 3.00576120 102.76

8 149.94087000 149.70614000 -0.23473000 -0.25492036 108.60

9 20.76092900 20.75818400 -0.00274500 -0.00277719 101.17
I0 6.23888850 6.22105300 -0.01783550 -0.01811896 101.59

II 3.99426970 3.91787910 -0.07639060 -0.07985700 104.54
12 6.25765390 6.73601410 0.47836020 0.48739250 101.89

13 15.90449700 15.06538300 -0.83911400 -0.91444092 108.98

14 23.77727200 23.71259200 -0.06468000 -0.06987854 108.04

Unit: MPa

Figure 1 1
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Shapedesign sensitivity results for pointwise strain energy density of
cement on the bone-cement interface are given in Figure 12, for a 5% design

change in design parameter b 9. The pointwise strain energy density is

measured at one of the Gauss points at the bone-cement interface of each

cement finite element.

Results presented in Figure 12 show excellent agreeement between

predictions _' and actual changes A__, except in element 41. However, the
P

of _p for this element is small compared to others.magnitude

Even though results of sensitivity analysis of a pointwlse principal

stress in the stem and pointwlse strain energy density in the cement are

given, for variations of one design parameter for each, variations of all

other design parameters yield similar results. Shape design sensitivity

results for pointwise principal stress in the bone at the bone-cement

interface and for pointwlse strain energy density in the cement at the stem-

cement interface are found to be excellent.

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, 6b 9 = O.05b 9

(POINTWISE STRAIN ENERGY DENSITY IN THE CEMENT AT THE BONE-CEMENT INTERFACE)

El. 1 2 _' (_/A_pXlO0)%No. _P _p A_p P

17 2.693386 2.864695 0.171309 0.185526 108.30

18 1.324330 1.346854 0.022525 0.025306 112.35

19 1.358676 1.373181 0.014505 0.016123 111.15

20 2.968939 2.965287 -0.003652 -0.003972 108.76

21 6.532172 6.527846 -0.004325 -0.004688 108.39

22 6.197117 6.196119 -0.000998 -0.001068 107.01

23 12.301795 12.302323 0.000528 0.000569 107.74

38 5.474089 5.847445 0.373356 0.398447 106.72

39 2.187812 2.236401 0.048590 0.053682 110.48

40 2.045186 2.077065 0.031879 0.034058 106.83

41 3.616023 3.6[6629 0.000606 0.000478 78.88

42 10.974028 10.976652 0.002624 0.002725 103.84

43 16.638003 16.640659 0.002656 0.002837 106.81

44 22.454411 22.455967 0.001556 0.001666 107.05

Unit: kJ/m 3

Figure 12
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A doubly curvatured arch dam (Figure 13) that is similar to one treated

by Wassermann (Ref. 15) is optimized using higher order finite-element

approximation and the continuum shape design sensitivity analysis method
presented here.

The dam structure and loading conditions are assumed to be symmetric with

respect to the crown cross section. Thus, only half of the dam is analyzed.

Also, it is assumed that the dam foundation is rigid, and the gravel concrete

is homogeneous and behaves elastically. Concrete's elasticity modulus and

Poisson's ratio are E = 21.0 GPa and 9 = 0.2, respectively. Water and concrete

weight densities are I0.0 kN/m 3 and 24.0 kN/m 3, respectively.

To parameterize two surfaces (water and free sides), Bezier surface

parameterization is used with a 4x4 array of points. For a shape design

parameter, the x2-coordinates of 32 control points are selected. The dam

finite-element model contains 36 ANSYS STIF 95 elements, 315 nodal points, and

726 active degrees of freedom.

DOUBLY CURVATURED ARCH DAM

:_Rf'pF - | NP-

\
RRCH ORM SEHSI

oR[P_' - ] NP t

./ 3

Z :(

RRC|I :_HRLY:S I :;.

• 36 elements (ANSYS STIF95), 315 nodes, and 726 active DOF.

Figure 13
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The principal stress is used as a design failure criteria. Principal
stresses are measuredat Gausspoints on the surface of the dam(8 Gauss
points for each finite element). Design sensitivity analysis results are
tested for pointwise principal stresses. Excellent agreement between
predictions and actual changes is obtained.

The optimal design problem for the doubly curvatured arch damis to
minimize the volume of the dam, subject to constraints on pointwise principal
stress on the surface of damand thickness at the top of the dam. For
iterative optimization, Pshenichny's linearization method (Ref. 16) is used.
History of cost function and maximumconstraint violation is shownin Figure
14. Afte_ 17 design iterations, cost is reduced from an initial value of
253,566 m_ to 182,583 m° and the maximumtensile stress is reduced from an
initial value of 3.084 MPato 1.981MPa.

51

2.9

2.7

2.5

2.5

2.1

1.9

1.7

OPTIMIZATION OF DOUBLY CURVATURED ARCH DAM

Minimize volume subject to:

Principal stress; - i0 MPa < _i < 2 MPa, i = 1,288

Dam thickness; 6m < tj, j = 1,4

ARCH DAM OPTIMIZATION COST-CONSTRAINT HISTORY

I 1 | I I I | I

J i I I I I I I

0 2 4 6 8 I0 12 14 16

ITERATION NUMBER

18

Figure 14
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A profile of the final design is shown in Figure 15. The final design

shown in Figure 15 is rather different from Wasserman's design (Ref. 15),

mainly in the bottom portion of the dam. The final design obtained here had

developed a fillet in the bottom corner, which is not observed in Wasserman's

design.

In the crown cross section shown in the Figure 15, the middle portion is

thinner than the top portion. From stress distribution in the final design,

it is observed that the maximum tensile stress in this middle portion is well

below the critical value of 2 MPa. Another interesting observation is that

the compressive stress limit of -i0 MPa has never been violated. In fact, at

the final design, the maximum compressive stress is -5.202 MPa.

A PROFILE OF THE FINAL DESIGN

_R£P7 -XHP=

RRCH DRtl

'R£P7 -]HP=

RRCH n _HRLY$|$. _/X

Figure 15
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Accuracy of the Domain Method for the Material Derivative

Approach to Shape Design Sensitivities

R. J. Yang and M. E. Botkin
General Motors Research Laboratories

Warren, Michigan

Abstract

Numerical accuracy for the boundary and domain methods of the material derivative
approach to shape design sensitivities is investigated through the use of mesh refinement.

The results show that the domain method is generally more accurate than the boundary
method, using the finite element technique. It is also shown that the domain method is

equivalent, under certain assumptions, to the implicit differentiation approach not only
theoretically but also numerically.

Introduction

Haug and Choi et al. 1-4 developed a unified theory of structural design sensitivity
analysis for linear elastic structures, using a variational formulation of the structural state

equations. This theory allows one to take the total derivative, or material derivative, of
the variational state equation and to use an adjoint variable technique for design sensitiv-
ity analysis. The main attraction of this approach is that it allows one to compute the
derivatives of structural performances analytically. No discretization approximations are
involved during the derivation, and a step size need not be specified in the calculation.
However, the formulation requires evaluating accurate stress quantities on the boundaries
which are often difficult to obtain.

Accuracy of the shape design sensitivity theory was studied in Ref. 5 through the
equilibrium condition for different types of finite elements. However, a systematic study
through the refinement of the finite element mesh was still not found in the literature.

To improve the accuracy of shape design sensitivities. Choi et al. 6 proposed a new
domain method which transforms the boundary integrals into domain integrals and there-
fore is less influenced by the the inaccurate boundary stress evaluation. This method takes

advantage of the averaging nature of the finite element method, and is found to be more
accurate than the boundary approach which evaluates the derivatives using boundary in-

formation only 1-3 . However. a velocity field for the physical domain needs to be defined.

The necessity of defining the domain velocity may indicate that this method is closely
related to the implicit differentiation approach which also requires knowledge about the
domain change for differentiation of the elemental stiffness matrix 7

In this paper, the accuracy of the design sensitivity is studied through finite element
mesh refinement for a cantilever thin plate. Results of the domain and boundary methods

for the material derivative approach and the implicit differentiation approach are shown
and compared.

In a previous paper 8, the boundary integral formulation was shown to be equivalent
to the implicit differentiation approach, theoretically. In this report, the domain method
is shown to be equivalent to the implicit differentiation method, both in theoretical and
numerical aspects.

Shape Design Sensitivity Analysis

Two approaches for shape design sensitivity analysis are found in the literature. One is
the well known implicit differentiation approach and the other is the variational or material

FF£OE)iNG PAGE BtANK _ R_.MED
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derivative approach. Detailed information for these two approaches is available in Refs. 4,
7, and 8. Only a brief background is provided in the following.

For the implicit differentiation approach, the displacement sensitivity is obtained by
differentiating the discretized structural system of equations

gz=F (1)

By assuming that the force vector F is independent of design, this leads to

Oz OK

Obi - K- 1-- = (2)

where K is the global stiffness matrix, z is the displacement vector, and bi is the design
variable.

The variational design sensitivity theory uses the material derivative concept of con-
tinuum mechanics and an adjoint variable method to obtain computable expressions for
the effect of shape variation on the functionals arising in the shape design problem. The
variation of the displacement functional _b with respect to shape change is derived by differ-
entiating the variational equilibrium equation and employing the adjoint variable method,
to obtain 1--4

i_ = [_ ai3(z)eiJ()_)Vknk dr (3)
./1"

where ¢ is defined by

= fa z$(x-_) d_ (4)

in which _ is the point of interest,/5 the Dirac-measure at zero, 12 the physical domain, a ij

and e i_ the stress and strain tensors, respectively. V the design perturbation and can be

thought of as velocity, and n k the unit normal vector of moving boundary r. The vectors
z and A are the displacement vectors for state and adjoint equations, respectively, which
can be expressed as follows:

/_1 aiJ(z)eq (-2)dfl = fr2 Ti_i dr (5)

f aiJ(A)eii(-A) dfl= fa b(x-_)Adfl (6)

where T, is a traction vector, 1"2 a loaded boundary, and - indicates the virtual displace-
ments that satisfy the kinematically admissible displacement field. The Einstein summa-
tion convention for a repeated index is used throughout this paper.

To obtain Eq. 3, the traction vector T,, the kinematically constrained boundary, and
the loaded boundary are assumed to be fixed during the design process, i.e., they are
independent of design. Note that the variation of the displacement functional of Eq. 3 is
only affected by the normal movement of the boundary of the physical domain.

Physically, the adjoint equation of Eq. 6 is interpreted by applying a unit load at the
poinl 5, where the displacement sensitivity is of interest. In Eq. 3, one sees that only
the boundary stress information is needed for evaluating the variation of the displacement

functional. Unfortunately, finite element analysis usually does not provide high quality
stress results, especially on the boundary. It has been shown that better finite element
results give better design sensitivity estimates, by examining the equilibrium equations for
different finite elements 5
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Domain Method

The basic idea for the domain integral method is to take advantage of the averaging
nature of the finite element method, instead of evaluating the less accurate stresses on the
boundary. Since the finite element method is well known to provide better solutions inside
the finite element, the domain method has the advantage of predicting better sensitivities.

Applying the same procedure as in obtaining Eq. 3 with the domain method, the first

variation of the displacement constraint functional of Eq. 4, is obtained as 4,6

(7)

One should note that Eq. 7 is more general than Eq. 3, since only the loaded boundary
is assumed to be fixed, while both loaded and kinematically constrained boundaries are

assumed to be unchanged in Eq. 3. The kinematically constrained boundary and interface
boundary terms appear when the divergence theorem is used to transform the domain

integral to the boundary integral. It was shown in Ref. 6 that for an interface or built-up
structure problem this method simplifies the formulation and avoids specifying tedious
interface conditions and provides increased accuracy for shape design sensitivities.

To have a better understanding of Eq. 7, each term will be examined individually.

First, since the stress tensor a i3 is symmetric, the first term of Eq. 7 is divided into two
parts and then integrated by parts to obtain

l [z_,kVk,j + zj,kVk,i] df_

1 [z,,k  nj + =,,kVkn,]er= fr (8)

By assuming that only the free boundary is varied, the first term of Eq. 8 disappears,

since the traction vector is zero, i.e., oiJ(A)nj = ai_(A)ni = 0. The second term of Eq. 8
then can be further modified to

/o da
(9)

where the velocity Vk can be parametrized as (c3xk/Obi)6bi, in which xk is the position
vector and bi is the design variable. Since all the integrals are linear in design, one can
eliminate 6b i or choose the value as a unit number. By interpreting the adjoint variable
A as the inverse of the reduced stiffness matrix K if all the displacement sensitivities are

desired, Eq. 9 is discretized, using the finite element formulation, as s

/f_ N_ /_ T ¢9xkaO(A)e'_(z)Vk, df_ = K-I __ B DB,k-_i z df_
1 e

Ne

= K-1 _ fa BTDB_z dfl
1 e

(10)
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where the subscript i with a prime superscript indicates the derivative with respect to

the i th design variable. K, D, and B represent the stiffness, elasticity, and strain recovery
matrices, respectively. The stress-displacement and strain-displacement relationships are
employed in obtaining Eq. 10, which are defined in the following

a'J(A) = DBA (11)

 iJ(z) = Bz

Finally, the first term of Eq. 7 is written as

The second term of Eq. 7 can also be derived in the same way to obtain a similar
expression as in Eq. 12 as

Ne

1 e

Substituting Eqs. 12 and 13 into Eq. 7, the following expressions are obtained

_z

= ], [eJ(_)z,,_V_,, + o'J(z)_,,_V_,,.- e"(z)_'"(A)V_,_] da

N_

= -K-' Z f_ BTDB:z + BT'DBz + B TDBzVk,k df_
1 •

N_

:-.-'z(io
I e

(14)

where [ J [ is the determinant of the Jacobian matrix J which transforms the undeformed
configuration into the natural coordinate system. The constraint functional change $_ is

equal to Oz/Ob_, since all displacement sensitivities are calculated and the design change
_b_ is chosen as a unit number.

For the implicit differentiation approach of Eq. 2, the derivative of the global stiffness
matrix can be evaluated at the elemental level, i.e.,

Oz _K_IOK

z (i5)
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where K_' is calculated numerically in natural coordinates as 7

K e'-- f__l/__1 f__l [ BTIDB [ g ] At-B TDB' [ J I .+B TDB J i_ ] d_dTId_ (16)

Comparing Eqs. 14 and 15, one sees that both are equivalent if the following expression
is valid.

I g I_=l J [ Vk,k (17)

To prove Eq. 17 is true, one should notice that the determinant of the Jacobian can
be separated into two parts. The first contribution is from the deformed to undeformed
configuration, denoted by I J Id, which depends on design. The other is the contribution
of transformation from the undeformed global to local or natural configurations, denoted

by I J 1, which is independent of design. The relationship is expressed in the following
form

[J[r=l Jid I gt (18)

where r denotes the deformed configuration. Differentiating Eq. 18 with respect to design,
one obtains

I J I'=i J I_ I JI (19)

It was shown in Ref. 4 that [ J [_= Vk,k at r = 0, if the design change is assumed to be

equal to a unit vector. Thus, Eq. 19 is identical to the form of Eq. 17, and the equivalence
of Eqs. 14 and 15 is proved.

Another way to prove the validity of Eq. 17 is to carry out the differentiation directly
by the definition of the Jacobian. Consider a two-dimensional case as an example, the

right side of Eq. 17 is obained as

I g l Vk'k = c3ec3 7 c%?_ _--Ox- + _-]
(20)

where the velocity _ and Vy are defined as

_X

by
(21)

Substituting Eq. 21 into Eq. 20, the following expression is obtained

O (Oxi)y OyOx)[ J IV k'k -- i)bi O( Or] 0_-_

=1J I;
(22)

This simple calculation also verifies that the relationship of Eq. 17 is valid. Note that the
design change 6b, is assumed to be unity in Eq. 17.
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Numerical Verification and Comparison

In this section, the equivalence of the domain method and the implicit differentiation
is verified through a simple example. The accuracy of design sensitivities will be examined
and compared through the refinement of the finite element mesh.

A simple two-dimensional thin plate is considered as an example. The finite element
configuration, dimensions, material properties, loading condition, and design variable are
shown in Fig. 1. Design variable b is chosen to move the upper traction free boundary.
The load of 100 lb is applied parabolically at the right of the plate.

An 8-noded two-dimensional plane stress isoparametrie element is employed for analy-
sis. The boundary stresses and strains that appear in Eq. 3 are computed by extrapolat-
ing linearly from the stresses at Gauss points, where the optimal or the best approximate
stresses are located. Numerical results for design sensitivity of point A in the Y-direction
for lxl, 2x2, 3x3.4x4, 5x5 and 6x6 meshes are shown in Table 1.

In Table 1, column 1 represents different finite element meshes and column 2 the
displacement of point A in the Y-direction for the initial design, b. Columns 3 and 4

represent the displacement sensitivities at point A of Fig. 1, using the boundary method
(BM) of Eq. 3 and the domain integral (DM) of Eq. 7, respectively, for different meshes.
Column 5 has the results using the implicit differentiation approach (IDA) of Eq. 2. The
derivative of the global stiffness matrix is carried out by differentiating the element stiffness
matrix, analytically.

Fig. 2 shows the same results as in Table 1. From Fig. 2 and Table 1, one observes that

the displacements and the sensitivities for the implicit approach (IDA) do not change much
after 3x3 finite element mesh. However, the design sensitivity for the boundary method
of the variational approach (BM) is still increasing at the limit of mesh refinement. This

implies that the boundary method (BM) is more sensitive to the finite element results,
although it provides the analytical formulation for sensitivities. And one concludes that

the boundary method of the variational approach tends to yield better gradient estimates,
once a more accurate analysis is used and better boundary stresses are obtained. The
same conclusion is also found in Refs. 5 and 8.

Comparing column 4 with 5, one sees that the domain method results (DM) are very
close to those obtained from the analytical implicit differentiation approach (IDA). Clearer
interpretation can be observed from Fig. 2, which plots the displacement and displace-
ment sensitivity versus finite element mesh size. This numerical agreement verifies the
equivalence of the two approaches.

In Ref. 8. the boundary the method was shownto be theoretically equivalent to the
implicit approach, however, they yield slightly different results numerically as also shown
in Table 1 and Fig. 2. The difference results from different numerical schemes for these two
approaches, i.e., one uses the boundary, and the other the domain information. If consistent

numerical schemes are used for the domain method and the implicit approach as in this
report, they are shown to be equivalent, not only theoretically but also numerically.

The disadvantage of the domain method is in computational aspects. Numerical eval-

uation of Eq. 7 is more complicated than evaluation of Eq. 3, because Eq. 7 requires
integration over the entire domain, whereas Eq. 3 requires integration only over the vari-
able boundary. In addition, a velocity field which satisfies regularity properties must be
defined in the domain. The choice of velocity for the physical domain is more difficult than

that for the variable boundary. Although, a boundary layer scheme 9 and a displacement-

like velocity field 10 were proposed to alleviate these problems, the domain method still
requires more analyst and computational efforts.
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Summary

It is shown that accurate finite element analysis results in accurate design sensitivities.
For the boundary method of the material derivative approach to shape design sensitivities,
the accuracy of the finite element is more crucial, since the finite element method usually
does not give accurate stresses on the boundary.

The domain method is generally more accurate than the boundary method in the
material derivative approach for evaluating the design sensitivities; however, a velocity
field for the physical domain needs to be defined. The necessity of defining a domain
velocity field and integrating the domain integral instead of the boundary integral, as in
boundary method, requires both more analyst time and computational time.

It is also shown that the domain method is equivalent, under certain assumptions,
to the implicit differentiation approach not only theoretically but also numerically. The
numerical equivalence is valid only if the numerical methods used for both approaches are
consistent.
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Table 1. Comparison of Design Sensitivity Accuracy

BM DM IDA

mesh displacement dv/db dv/db dv/db

lxl 2.495E-5 -4.196E-6 -4.843E-6 -5.248E-6

2x2 2.760E-5 -4.518E-6 -5.167E-6 -5.235E-6

3x3 2.841E-5 -4.856E-6 -5.369E-6 -5.375E-6

4x4 2.845E-5 -4.995E-6 -5.391E-6 -5.394E-6

5x5 2.854E-5 -5.093E-6 -5.412E-6 -5.413E-6

6x6 2.856E-5 -5.158E-6 -5.425E-6 -5.426E-6

b
/

/
/
/
/
i

E • 1.0 x 10? psi

V-0.3

_A

10"

I00 Ib

I0" Ixl 2x2

3x3 4x4

finite element meshes

(8-nodeplane stress element)

Y
Fig. 1 Square Thin Plate
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INTRODUCTION

Due to the wide variety of uses of sensitivity derivatives, the development of

efficient computational procedures for the calculation of these derivatives has at-

tracted considerable attention in recent years. The calculation of sensitivity

derivatives forms the backbone of many optimization procedures and is the major

contributor to the cost and time of optimization of large systems. In addition,

sensitivity derivatives have several other applications in structural mechanics in-

cluding approximate analysis (and reanalysis) techniques, analytical model improve-

ment, and assessment of design trends. A review of the state of the art in

sensitivity calculations is contained in a survey paper (Ref. I), a monograph

(Ref. 2), as well as in some papers in these proceedings. Despite all the recent

advances made, the calculation of sensitivity derivatives for large structural

systems (with large number of degrees of freedom and design variables), is quite

expensive even on present-day large computers.

The present study focuses on the development of efficient techniques for cal-

culating sensitivity derivatives. Specifically, the objective and scope of the

present paper are listed in Fig. I. The objective is to present a computational

procedure for calculating sensitivity derivatives as part of performing structural

reanalysis for large-scale problems. The scope of the paper is limited to framed

type structures. Both linear static analysis and free-vibration eigenvalue problems
are considered.

Objective

To present a computational procedure for calculating
sensitivity derivatives as part of performing structural
reanalysis for large-scale problems

Scope

• Frame-type structures

• Linear static analysis

• Eigenvalue problems

Figure 1

357



BASIC IDEA AND KEY ELEMENTS OF THE PROPOSED PROCEDURE

The basic idea and the three key elements of the proposed procedure are listed

in Fig. 2. The basic idea is to generate the solution of the modified structure

using large perturbations from that of the original structure. The three key ele-

ments are: a) lumping of the large number of design variables into one (or a small

number of) tracing parameters; b) application of operator splitting/reduction

technique; and c) for very large problems, use of single-level or multilevel sub-

structuring. Only the first two key elements are discussed in this paper. The

application of operator splitting/reduction technique proved to be effective in

reducing the computational effort in a number of structural mechanics problems (see,

for example, Refs. 3 to 6).

Basic idea

• Solution for modified structure is obtained using large

perturbations from that of original structure

Keyelements

• Lumpingof design variables into tracing parameter(s)

• Application of operator splitting/reduction technique

• Useof multilevel substructuring (for very large problems)

Figure 2
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APPLICATION TO LINEAR STATIC ANALYSIS

In Fig. 3 the application of the proposed procedure to linear static analysis

is outlined. The governing finite element equations of the original and modified

structures are shown. The global stiffness matrices, load vectors, and responses

of the original and modified structures are designated by [K]o , [K]; {P}o' {P}; and

{X}o, {X}, respectively. The original and modified structure characteristics cor-

respond to the values of d? and d. of the design variables, respectively.
i i

The operator splitting technique is now applied, and the equations of the

modified structure are expressed in terms of the original structure equations plus

correction terms. A tracing parameter X is introduced and is attached to the cor-

rection terms. The tracing parameter is dimensionless and identifies _ the design

modifications. The original structure equations correspond to X=0, and the modified

structure equations correspond to X=I.

Operator splitting

Original structure

[K]otXt° =tPto:[K]o
Modified structure

K]o + _, K]- [K]oIX}= {Plo+ _,{PI- {P}o

_, = 0 _ Original structure

}, = 1 --.- Modified structure

Figure 3
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REDUCTION METHOD FOR STATIC PROBLEMS

The response of the modified structure, {X}, is now expressed as a linear com-

bination of a few preselected global approximation vectors (or modes). This is

expressed by the transformation shown in Fig. 4. The columns of the matrix IF] are

the global approximation vectors, and the elements of the vector {4} are the ampli-

tudes of the approximation vectors which are, as yet, unknowns. Note that the

number of global approximation vectors, r, is considerably smaller than the total

number of degrees of freedom, n.

A Rayleigh-Ritz technique is now used to approximate the governing equations of

the modified structure by a much smaller system of equations in the unknowns {4}.

Basis reduction

tXt n, 1 = [Fin, r t¢/t r, 1 ; r < < n

where {$} = amplitudes of global approximation vectors

Reduced system of equations

Rayleigh-Ritz technique used to approximate the equations of
the m_ified structure

K ° + _ K - K o = {Pt o -)' PI-IP}o

where [K]o = [r]t JK]o [r]

['KI= [rlt[Kllrl

° = lr-It {Pt0

N

{P} - lrl tIP}

Figure 4
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SELECTIONANDEVALUATIONOF THEGLOBALAPPROXIMATION

The effectiveness of the proposed procedure depends, to a great extent, on the
proper choice of the global approximation vectors. In the present study the global
approximation vectors are selected to be the response of the original structure,
{X}o_ and its various-order derivatives with respect to the parameter X. The re-
cursmon relations for evaluating the approximation vectors are obtained by successive
differentiation of the original finite element equations. Note that the matrix on
the left hand sides of these equations, [K]o , is the same(see Fig. 5).

Ixl= Jr]t_}
_X _2X

where[r]=[txtoI_l0I--I0 .]
_2 " "

[K]o {X}o = {P}o

_([.].[.]o) X o+tPt- P,[K]° _-fo

_2X _X
["]o,_}o:-_(["]- e"]o){_}o

0

Same left hand side•

Figure 5
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COMPUTATIONAL PROCEDURE

The computational procedure for generating the solution of the modified struc-

ture and the sensitivity derivatives is outlined in Fig. 6.

The first step is to generate the global approximation vectors at %=0 through

decomposition of the stiffness matrix of the original structure. The derivatives

with respect to % provide information about the sensitivity of the response to

the design modifications. Because % is dimensionless, the derivatives with respect

to X have the same dimensions as the original response quantities, and consequently

an assessment of the effect of desig_ modifications on the response can be easily

made.

The second step is to generate the reduced equations and solve them for the

amplitudes of the global approximation vectors.

• Evaluate global approximation vectors at _ = 0

• . Derivatives with respect to ;_ represent sensitivity of
the response to design modifications

• Generate reduced equations

Solve reduced equations and find amplitudes of
global approximation vectors

Figure 6
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RELATIONSHIPBETWEENTHEPRECONDITIONEDCONJUGATEGRADIENT(PCG)
TECHNIQUEANDTHEPROPOSEDCOMPUTATIONALPROCEDURE

If the proposed computational procedure is contrasted with the preconditioned
conjugate gradient (PCG)technique in which the preconditioning matrix is selected
to be the global stiffness matrix of the original structure, [K] , the relationshipsoshownin Fig. 7 can be identified. These relations express the preconditioned re-
siduals {Y}o' {Y}I' ... of the PCGtechnique in terms of the global approximation

aX {82X}
vectors of the foregoing technique, {_}o' a%2 o' ....

Equivalence

)] +,(,P,]0+_([_][_]0txt=tPto

[K] o = preconditioning matrix

PCG Proposed procedure

XIo ""-"

Preconditioned
residuals

{Y}o

{Y}I

{Y}i

{X}o

0

c_X + 2 {__(1-C o) _-_ )

i+I Cj ,{c_Jxt

0

Figure 7
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IMPLICATIONSOFTHESIMILARITIESBETWEENTHEPROPOSED
PROCEDUREANDTHEPCGTECHNIQUE

The implications of the similarities between the proposed computational pro-
cedure and the PCGtechnique are listed in Fig. 8.

For the PCGtechnique, the similarities can be exploited to provide a rational
approach for selecting the preconditioning matrix (as the global stiffness matrix
of the original structure), and a physical meaning for the preconditioned residual
vectors (in terms of sensitivity derivatives).

For the proposed procedure, someof the work done on parallelizing the PCGon
multiprocessor computers can be exploited.

PCG

• Rationalchoiceforpreconditioningmatrix

• Physical meaning for preconditioned residuals
(in terms of sensitivity derivatives)

Proposed procedure

• Exploiting work done on parallelizing PCG on
multiprocessor computers

Figure 8
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APPLICATIONTOEIGENVALUEPROBLEMS

The application of the proposed computational procedure to free vibration
(eigenvalue) problems is outlined in Fig. 9. The governing equations of the origin-
al and modified structures are shown. Again, the operator splitting technique is
applied, and the stiffness and massmatrices of the modified structure are written
as the sumof the corresponding matrices of the original structure plus correction
terms. The correction terms are identified by the tracing parameter X. WhenX=0,
the original structure equations are recovered, and when X=I the modified structure
equations are obtained.

Original structure

Operator splitting

[[q0 0]I×10-0
Modified structure

or,

[[K]- n[M]]Ix_:o

[(N0 0 a

where

;_ = 0 --,,-- original structure

_, = I _ modified structure

[K]a = [K]-[K]o

[M]a = [M]-[M]o

=0

Figure 9
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REDUCTION METHOD FOR EIGENVALUE PROBLEMS

The application of the reduction method to the free vibration problem is outlined

in Fig. i0. As in the static analysis, the eigenvectors of the modified structure,

{X}, are approximated by a linear combination of a few global approximation vectors.

This is accomplished by the transformation shown. An efficient choice of the ap-

proximation vectors was found to be a few eigenvectors for the original structure

(corresponding to X=0) and their derivatives with respect to X, evaluated at X=0.

Then, the Rayleigh-Ritz technique is used to approximate the original large

eigenvalue problem by the reduced one shown in Fig. i0. The solution of the reduced

eigenvalue problem gives the amplitudes of the global approximation vectors.

Basis reduction

• Eigenvectors of modified structure, IX}, are approximated by:

tX}n, 1 = [F]n, r lOtr, 1 ; r <<n

where

2 X=O

Reduced system of equations

• Rayleigh-Ritz technique is used to approximate the original

eigenvalue problem by a reduced one

where

o- Q[M] 0) +;_

[_1o

[K!a

I_1o

I_1_

- _[M] Ie}= o
a

=lrltlKlolrl

=lrltlKla It]

=lrlt lMlolrl

=lrltlMlalrl

Figure I0
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EVALUATIONOFGLOBALAPPROXIMATIONVECTORS

The recursion equations used in generating the eigenvectors at %=0and their
first derivatives with respect to %are shownin Fig. ii. Note that the left hand
sides of all these equations are the same. The expression of the first derivatives
of the eigenvalues with respect to %appearing on the right hand sides of the equ-
ations are given in Fig. ii.

Since the matrix on the left hand side of the recursion equations used in
evaluating these derivatives is singular, the solution of each set of equations can
be expressed as the sumof a homogeneoussolution (multiple of the eigenvector) and
a particular solution, {Q}I The equations used in evaluating the particular solu-
tion {Q}I are given in Fig#'ll. The details of this procedure are given in Ref. 5.

Recursion formulas

0 0

IN [M]0 0

IXl = 0

+

=,o,,÷c,,x,

Where I Q} 1 = particular solution.

Figure ii
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COMPUTATIONALPROCEDUREFOREIGENVALUEPROBLEMS

The procedure for extracting the eigenvectors of the modified structure and for
generating the sensitivity of the eigenvectors to design modifications is outlined
in Fig. 12.

First: A few eigenvectors of the original structure (corresponding to %=0)are
generated.

Second: The derivatives of the eigenvectors with respect to %are generated at
%=0. In the process, derivatives of the eigenvalues are also computed. These de-
rivatives provide sensitivity information regarding the effect of all the design
modifications on the eigenvectors and eigenvalues. The reduced equations are
generated.

Third: The reduced eigenvalue problem is solved at %=1.

• Generateeigenvectors for original structure (_ = O)

Generateglobal approximation vectors (derivatives of
eigenvectors w.r.t. _) and reduced equations. In the
process, derivatives of Q w.r.t. _ are computed

• Solve reduced eigenvalue problem at _ = 1

Figure 12
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CANTILEVEREDLATTICETRUSS

To assess the effectiveness of the proposed computational procedure, a number
of problems were solved by this procedure. Comparisonwas madewith the direct solu-
tion of the structure. Herein a typical problem of a five-bay cantilevered lattice
truss is considered (see Fig. 13). In the original structure all the longerons had
the samecross section, and all the battens and diagonals had the samecross section.
The design variables consisted of the cross sectional areas, momentsof inertia and
torsional constants. The characteristics of the original and modified structures
are given in Fig. 13.

Z

,v,_r st bay

I. '1
0.75m

16 Design variables (8 varied)

4 Cross-sectional areas

8 Moments of inertia

4 Torsional constants

rt_Pe: _ 109x 12 4!109xi 4 108xj ¢P ty 10 x A m" m 3 m m

0.3

0.15

0.075

0.04

6.0

O.65

1.5

0.15

6.0

0.65

1.5

0.15

Original design: Longerons - type 1

Battens and diagonals -- type 2

Modified design: First bay -- Longerons -- type 1

Battens and diagonals -- type 2

Other bays - Longerons -- type 3
Battens and diagonals -- type 4

1.2

0.13

0.3

O.03

Figure 13
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STATICLOADING

The first problem considered is that of the static response due to a transverse
load in the z direction at the free end of the cantilever. Figure 14 showsa sum-
mary of the results. The transverse displacement w and rotation at the free end
(point a) of the original structure are given. The sensitivity of these quantities

_X {_-X} Also shownin Fig. 14 are
to design modifications is provided by {_}oand 212
the corresponding w and _2 for the modified structure (which are considerably larger
than those for the original structure). The solution obtained using the proposed
procedure with four global approximation vectors was identical to the direct solution
of the modified structure to at least three significant digits.

Original

structure

X-O

Modified

structure

;_- 1

Static analysis

Ixl

Ixl

(1_,21o

w at a ¢ 2at a

O. 102

O.0737

O. 110

O. 394

O. 394

-0.0397

-0. 0257

-0. 0388

-0.142

-0.143

Full system O. 394 -0. 143

.:_."-...
..:• ....

....,;........,,.
...L:_......-

Figure 14
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FREEVIBRATIONS

The second problem considered is that of the free vibrations of the samelattice
structure. Figure 15 shows a summaryof the results. The first three eigenvalues
(squares of the vibration frequencies) and their first two derivatives with respect
to I are listed. The corresponding eigenvalues of the modified structure are also
listed. The frequencies predicted by the proposed procedure with eight approximation
vectors (four eigenvectors and their first derivatives with respect to I) and twelve
approximation vectors (four eigenvectors and their first two derivatives with respect
to X) are listed. The predictions of the eight-vector approximation are accurate for
the first two eigenvalues, but not the succeeding ones. On the other hand, the pre-
dictions of the twelve-vector approximation are accurate for the first three
eigenvalues.

Original
structure
_,=0

Modified
structure
X=I

lO-5x Q

O_
lO-5x a%

-5 c_2Q
10 x 2

-5
10 x

Q

r=8

r= 12

Full
system

Mode

O.324

-0.134

-0.0911

O.122

O.122

O.122

2

O.502

-0. 207

-0.141

0.191

0.191

0.191

3

1.815

-0.486

-0. 472

0.583

O.896

O.896

Figure 15
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MODE SHAPES

The first three mode shapes of the modified structure are shown in Fig. 16.

Note that the first two vibration modes are bending modes and the third is a

torsional mode.

Free vibrations
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SU_fl_ARY

In summary, a computational procedure has been developed for calculating the

sensitivity derivatives of large structural systems as part of structural reanalysis

(see Fig. 17). The three key elements of the procedure are:

a) lumping of the large number of design variables into one (or small number

of) tracing parameter(s);

b) application of operator splitting/reduction technique; and,

c) for very large problems use of multilevel substructuring technique.

The proposed procedure can be considered as a general computational strategy for

generating the response of the modified structure using large perturbations from the

response of the original structure.

For static problems the similarities between the proposed procedure and precon-

ditioned conjugate gradient technique are identified and are exploited to provide a

rational procedure for selecting the preconditioning matrix and a physical meaning

for the preconditioned residual vectors.

Future work includes:

o extension to more complex structures and to shape design modifications

o generation of sensitivity information with respect to design variables.

• Computational procedure presented for calculating
sensitivity derivatives as part of performing
structural reanalysis for large-scale problems

• Lumping of design variables into tracing parameter(s)

• Application of operator splitting/reduction technique

• Use of multilevel substructuring

• Future work includes:

• Extension to more complex structures and to shape
design modifications

• Generation of sensitivity information w.r.t, design variables

Figure 17
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